Схема для измерения параметров конденсаторов. Измеритель емкости конденсаторов своими руками

Самодельные измерительные приборы

В. ВАСИЛЬЕВ, г. Набережные Челны
Радио, 1998 год, №4

Тот, кто занимается ремонтом бытовой или промышленной радиоаппаратуры, знает, что исправность конденсаторов удобно проверять без их демонтажа. Однако многие измерители емкости конденсаторов такой возможности не предоставляют. Правда, одна подобная конструкция была описана в . Она имеет небольшой диапазон измерения, нелинейную шкалу с обратным отсчетом, что снижает точность. При проектировании же нового измерителя решалась задача создания прибора с широким диапазоном, линейной шкалой и прямым отсчетом, чтобы можно было пользоваться им, как лабораторным. Помимо этого, прибор должен быть диагностическим, т. е. способным проверять и конденсаторы, зашунтированные р-n переходами полупроводниковых приборов и сопротивлениями резисторов.

Схема прибора

Принцип работы прибора таков. На вход дифференциатора, в котором проверяемый конденсатор используется в качестве дифференцирующего, подается напряжение треугольной формы. При этом на его выходе получается меандр с амплитудой, пропорциональной емкости этого конденсатора. Далее детектор выделяет амплитудное значение меандра и выдает постоянное напряжение на измерительную головку.

Амплитуда измерительного напряжения на щупах прибора примерно 50 мВ, что недостаточно для открывания р-n переходов полупроводниковых приборов, поэтому они не оказывают своего шунтирующего действия.

Прибор имеет два переключателя. Переключатель пределов "Шкала" с пятью положениями: 10 мкФ, 1 мкФ, 0,1 мкФ, 0,01 мкФ, 1000 пФ. Переключателем "Множитель" (Х1000, х10О, х10, Х1) меняется частота измерения. Таким образом, прибор имеет восемь поддиапазонов измерения емкости от 10 000 мкФ до 1000 пФ, что практически достаточно в большинстве случаев.

Генератор треугольных колебаний собран на ОУ микросхемы DA1.1, DA1.2, DA1.4 (рис. 1). Один из них, DA1.1, работает в режиме компаратора и формирует сигнал прямоугольной формы, который поступает на вход интегратора DA1.2. Интегратор преобразует прямоугольные колебания в треугольные. Частота генератора определяется элементами R4, С1 - С4. В цепи обратной связи генератора стоит инвертор на ОУ DA1.4, который обеспечивает автоколебательный режим. Переключателем SA1 можно устанавливать одну из частот измерения (множитель): 1 Гц (Х1000), 10Гц(х10О), 10ОГц(х10), 1 кГц(Х1).

ОУ DA2.1 - повторитель напряжения, на его выходе сигнал треугольной формы амплитудой около 50 мВ, который и используется для создания измерительного тока через проверяемый конденсатор Сх.

Так как емкость конденсатора измеряется в плате, на нем может находиться остаточное напряжение, поэтому для исключения повреждения измерителя параллельно его щупам подключены два встречно-параллельных диода моста VD1.

ОУ DA2.2 работает как дифференциатор и выполняет роль преобразователя ток - напряжение. Его выходное напряжение:

Uвых=(Rl2...R16)·IBX=(Rl2...Rl6)Cx-dU/dt.

Например, при измерении емкости 100 мкФ на частоте 100 Гц получается: Iвх=Cx·dU/dt=100-100MB/5MC = 2MA, Uвых= R16 ·lBX= 1 кОм · мА= 2 В.

Элементы R11, С5 - С9 необходимы для устойчивой работы дифференциатора. Конденсаторы устраняют колебательные процессы на фронтах меандра, которые делают невозможным точное измерение его амплитуды. В результате на выходе DA2.2 получается меандр с плавными фронтами и амплитудой, пропорциональной измеряемой емкости. Резистор R11 также ограничивает входной ток при замкнутых щупах или при пробитом конденсаторе. Для входной цепи измерителя должно выполняться неравенство:

(3...5)CxR1<1/(2f).

Если это неравенство не выполнено, то за половину периода ток IBX не достигает установившегося значения, а меандр - соответствующей амплитуды, и возникает погрешность в измерении. Например, в измерителе, описанном в , при измерении емкости 1000 мкФ на частоте 1 Гц постоянная времени определяется как

Сх·R25 = 10ОО мкФ - 910 Ом = 0,91 с.

Половина же периода колебаний Т/2 составляет лишь 0,5 с, поэтому на данной шкале измерения окажутся заметно нелинейными.

Синхронный детектор состоит из ключа на полевом транзисторе VT1, узла управления ключом на ОУ DA1.3 и накопительного конденсатора С10. ОУ DA1.2 выдает управляющий сигнал на ключ VT1 во время положительной полуволны меандра, когда его амплитуда установлена. Конденсатор С10 запоминает постоянное напряжение, выделенное детектором.

С конденсатора С10 напряжение, несущее информацию о величине емкости Сх, через повторитель DA2.3 подается на микроамперметр РА1. Конденсаторы С11, С12 - сглаживающие. С движка переменного резистора калибровки R22 снимается напряжение на цифровой вольтметр с пределом измерения 2 В.

Источник питания (рис. 2) выдает двухполярные напряжения ±9 В. Опорные напряжения образуют термостабильные стабилитроны VD5, VD6. Резисторами R25, R26 устанавливают необходимую величину выходного напряжения. Конструктивно источник питания объединен с измерительной частью прибора на общей монтажной плате.

В приборе использованы переменные резисторы типа СПЗ-22 (R21, R22, R25, R26). Постоянные резисторы R12 - R16 - типа С2-36 или С2-14 с допустимым отклонением ±1%. Сопротивление R16 получено соединением последовательно нескольких подобранных резисторов. Сопротивления резисторов R12 - R16 можно использовать и других типов, но их надо подобрать с помощью цифрового омметра (мультиметра). Остальные постоянные резисторы - любые с мощностью рассеяния 0,125 Вт. Конденсатор С10 - К53- 1А, конденсаторы С11 - С16 - К50-16. Конденсаторы С1, С2 - К73-17 или другие метал-лопленочные, СЗ, С4 - КМ-5, КМ-6 или другие керамические с ТКЕ не хуже М750, их необходимо также подобрать с погрешностью не более 1%. Остальные конденсаторы - любые.

Переключатели SA1, SA2 - П2Г-3 5П2Н. В конструкции допустимо применить транзистор КПЗОЗ (VT1) с буквенными индексами А, Б, В, Ж, И. Транзисторы VT2, VT3 стабилизаторов напряжения могут быть заменены другими маломощными кремниевыми транзисторами соответствующей структуры. Вместо ОУ К1401УД4 можно использовать К1401УД2А, но тогда на пределе "1000 пФ" возможно появление ошибки из-за смещения входа дифференциатора, создаваемого входным током DA2.2 на R16.

Трансформатор питания Т1 имеет габаритную мощность 1 Вт. Допустимо использовать трансформатор с двумя вторичными обмотками по 12 В, но тогда необходимо два выпрямительных моста.

Для настройки и отладки прибора потребуется осциллограф. Неплохо иметь частотомер для проверки частот генератора треугольных колебаний. Нужны будут и образцовые конденсаторы.

Прибор начинают настраивать с установки напряжений +9 В и -9 В с помощью резисторов R25, R26. После этого проверяют работу генератора треугольных колебаний (осциллограммы 1, 2, 3, 4 на рис. 3). При наличии частотомера измеряют частоту генератора при разных положениях переключателя SA1. Допустимо, если частоты отличаются от значений 1 Гц, 10 Гц, 100 Гц, 1 кГц, но между собой они должны отличаться точно в 10 раз, так как от этого зависит правильность показаний прибора на разных шкалах. Если частоты генератора не кратны десяти, то необходимой точности (с погрешностью 1%) добиваются подбором конденсаторов, подключаемых параллельно конденсаторам С1 - С4. Если емкости конденсаторов С1 - С4 подобраны с необходимой точностью, можно обойтись без измерения частот.

Далее проверяют работу ОУ DA1.3 (осциллограммы 5, 6). После этого устанавливают предел измерения "10 мкФ", множитель - в положение "х1" и подключают образцовый конденсатор емкостью 10 мкф. На выходе дифференциатора должны быть прямоугольные, но с затянутыми, сглаженными фронтами колебания амплитудой около 2 В (осциллограмма 7). Резистором R21 выставляют показания прибора - отклонение стрелки на полную шкалу. Цифровой вольтметр (на пределе 2 В) подключают к гнездам XS3, XS4 и резистором R22 выставляют показание 1000 мВ. Если конденсаторы С1 - С4 и резисторы R12 - R16 точно подобраны, то показания прибора будут кратными и на других шкалах, что можно проверить с помощью образцовых конденсаторов.

Измерение емкости конденсатора, впаянного в плату с другими элементами, обычно получается достаточно точным на пределах 0,1 - 10 000 мкф, за исключением случаев, когда конденсатор зашунтирован низкоомной резистивной цепью. Так как его эквивалентное сопротивление зависит от частоты Хс = 1/ωС, то для уменьшения шунтирующего действия других элементов устройства необходимо увеличивать частоту измерения с уменьшением емкости измеряемых конденсаторов. Если при измерении конденсаторов емкостью 10 000 мкф, 1000 мкФ, 100 мкф, 10 мкф использовать соответственно частоты 1 Гц, 10 Гц, 100 Гц, 1 кГц, то шунтирующее действие резисторов скажется на показании прибора при параллельно включенном резисторе сопротивлением 300 Ом (ошибка около 4%) и меньше. При измерении конденсаторов емкостью 0,1 и 1 мкф на частоте 1 кГц ошибка в 4% будет из-за влияния параллельно включенного резистора уже сопротивлением 30 и 3 кОм соответственно.

На пределах 0,01 мкф и 1000 пФ конденсаторы целесообразно проверять все-таки с отключением шунтирующих цепей, так как измерительный ток мал (2 мкА, 200 нА). Стоит, однако, напомнить, что надежность конденсаторов небольшой емкости заметно выше благодаря конструкции и более высокому допустимому напряжению.

Иногда, например, при измерении некоторых конденсаторов с оксидным диэлектриком (К50-6 и т. п.) емкостью от 1 мкф до 10 мкф на частоте 1 кГц появляется погрешность, связанная, по всей видимости, с собственной индуктивностью конденсатора и потерями в его диэлектрике; показания прибора оказываются меньшими. Поэтому бывает целесообразно производить измерения на более низкой частоте (например, в нашем случае на частоте 100 Гц), хотя при этом шунтирующие свойства параллельных резисторов будут сказываться уже при большем их сопротивлении.

ЛИТЕРАТУРА
1. Кучин С. Прибор для измерения емкости. - Радио. 1993, ╧ 6, с 21 - 23.
2. Болгов А. Испытатель оксидных конденсаторов. - Радио, 1989, ╧ 6, с. 44.

Одной из самых частых причин выхода радиоэлектронной аппаратуры из строя или ухудшения ее параметров является изменение свойств электролитических конденсаторов. Иногда при ремонте аппаратуры (особенно произведенной в бывшем СССР), изготовленной с применением некоторых типов электролитических конденсаторов (например, K50-...), для восстановления работоспособности устройства прибегают к полной или частичной замене старых электролитических конденсаторов. Все это приходится делать из-за того, что свойства материалов, входящих в электролитический (именно электролитический, т.к. в составе используется электролит) конденсатор, под электрическим, атмосферным, тепловым воздействиями со временем изменяются. И таким образом важнейшие характеристики конденсаторов, такие как емкость и ток утечки - так же изменяются (конденсатор "высыхает" и емкость его увеличивается, часто даже более чем на 50% от первоначальной, а ток утечки возрастает, т.е. внутреннее сопротивление, шунтирующее конденсатор уменьшается), что естественно приводит к изменению характеристик, а в худшем случае и к полному отказу аппаратуры.

Измеритель обладает следующими качественными и количественными характеристиками:

1) измерение емкости на 8 поддиапазонах:

  • 0 ... 3 мкф;
  • 0 ... 10 мкф;
  • 0 ... 30 мкф;
  • 0 ... 100 мкф;
  • 0 ... 300 мкф;
  • 0 ... 1000 мкф;
  • 0 ... 3000 мкф;
  • 0 ... 10000 мкф.

2) оценка тока утечки конденсатора по светодиодному индикатору;
3) возможность точного измерения при изменении напряжения питания и температуры окружающей среды (встроенная калибровка измерителя);
4) напряжение питания 5-15 В;
5) определение полярности электролитических (полярных) конденсаторов;
6) ток потребления в статическом режиме............ не более 6 мА;
7) время измерения емкости.................................... не более 1 с;
8) ток потребления во время измерения емкости с каждым поддиапазоном возрастает,
но................................................................................. не более 150 мА на последнем поддиапазоне.

Суть прибора - измерение напряжения на выходе дифференцирующей цепи, рис.1.

Напряжение на резисторе: Ur = i*R ,
где i - общий ток через цепь, R - зарядное сопротивление;

Т.к. цепь дифференцирующая, то ее ток: i = С*(dUc/dt) ,
где С - заряжаемая емкость цепи, но конденсатор будет линейно заряжаться через источник тока, т.е. стабилизированным током: i = С*const,
значит напряжение на сопротивлении (выходное для этой цепи): Ur = i*R = C*R*const - прямо пропорционально емкости заряжаемого конденсатора, а значит измеряя вольтметром напряжение на резисторе мы измеряем в некотором масштабе и исследуемую емкость конденсатора.

Схема представлена на рис. 2 .
В исходном положении испытуемый конденсатор Сх (или калибровочный С1 при включенном тумблере SA2) разряжен через R1. Измерительный конденсатор, на котором (не на испытуемом непосредственно) измеряется напряжение, пропорциональное емкости испытуемого Сх, разряжен через контакты SA1.2. При нажатии кнопки SA1 испытуемый Сх (С1) заряжается через соответствующие поддиапазону (галетный переключатель SA3) резисторы R2 ... R11. При этом зарядный ток Сх (С1) проходит через светодиод VD1, чья яркость свечения позволяет судить о токе утечки (сопротивлении, шунтирующем конденсатор) в конце заряда конденсатора. Одновременно с Сх (С1) через источник стабилизированного тока VT1,VT2,R14,R15 заряжается и измерительный (заведомо исправный и с малым током утечки) конденсатор С2. VD2, VD3 используются для предотвращения разряда измерительного конденсатора через источник напряжения питания и стабилизатор тока соответственно. После заряда Сх (С1) до уровня, определяемого R12, R13 (в данном случае до уровня примерно половины напряжения источника питания), компаратор DA1 отключает источник тока, синхронный с Сх (С1) заряд С2 прекращается и напряжение с него, пропорциональное емкости испытуемого Сх (С1) индицируется микроамперметром PA1 (две шкалы со значениями кратными 3 и 10, хотя можно настроить на любую шкалу) через повторитель напряжения DA2 с высоким входным сопротивлением, что также обеспечивает долгое сохранение заряда на С2.

Настройка

При настройке положение калибровочного переменного резистора R17 фиксируется в каким-либо положении (например, в среднем). Подключая эталонные конденсаторы с точно известными значениями емкости в соответствующем диапазоне, резисторами R2, R4, R6-R11 производится калибровка измерителя - подбирается такой ток заряда, чтобы эталонные значения емкостей соответствовали определенным значениям на выбранной шкале.

В моей схеме точные значения зарядных сопротивлений при напряжении питания 9 В составили:

После калибровки один из эталонных конденсаторов становится калибровочным С1. Теперь при изменении напряжения питания (изменения температуры окружающей среды, например при сильном охлаждении готового отлаженного прибора на морозе показания емкости у меня получались заниженными процентов на 5) или просто для контроля точности измерений достаточно подключить С1 тумблером SA2 и, нажав SA1, калибровочным резистором R17 произвести подстройку PA1 на выбранное значение емкости С1.

Конструкция

Перед началом изготовления прибора необходимо выбрать микроамперметр с подходящей шкалой(-ами), габаритами и током максимального отклонения стрелки, но ток может быть любым (порядка десятков, сотен микроампер) благодаря возможности настройки и калибровки прибора. Я применил микроамперметр ЭА0630 с Iном = 150 мкА, классом точности 1.5 и двумя шкалами 0 ... 10 и 0 ... 30.

Плата была разработана с учетом того, что она будет крепиться непосредственно на микроамперметре при помощи гаек на его выводах, рис.3 . Такое решение обеспечивает и механическую, и электрическую целостность конструкции. Прибор размещается в подходящий по габаритам корпус, достаточный для размещения также (кроме микроамперметра и платы):

SA1 - кнопка КМ2-1 из двух малогабаритных переключателей;
- SA2 - малогабаритный тумблер МТ-1;
- SA3 - малогабаритный галетный переключатель на 12 положений ПГ2-5-12П1НВ;
- R17 - СП3-9а - VD1 - любой, я применил какой-то из серии КИПх-хх, красного цвета свечения;
- 9-ти вольтовая батарея «Корунд» с габаритами 26.5 х 17.5 х 48.5 мм (без учета длины контактов).

SA1, SA2, SA3, R17, VD1 закрепляются на верхней крышке (панели) прибора и располагаются над платой (батарея укрепляется при помощи проволочного каркаса прямо на плате), но соединяются с платой проводами, а все остальные радиоэлементы схемы располагаются на плате (и под микроамперметром непосредственно тоже) и соединяются печатным монтажом. Отдельного выключателя питания я не предусматривал (да и в выбранный корпус он бы уже не поместился), совместив его с проводами для подключения испытуемого конденсатора Сх в разъеме типа СГ5. «Мама» XS1 разъема имеет пластмассовый корпус для установки на печатную плату (она устанавливается в углу платы), а «папа» XP1 подключается через отверстие в торце корпуса прибора. При подключение разъема «папа» своими контактами 2-3 включает питание прибора. К проводам Сх параллельно неплохо приладить разъем (колодку) какой-либо конструкции для подключения отдельных отпаянных конденсаторов.

Работа с прибором

При работе с прибором нужно быть внимательным с полярностью подключения электролитических (полярных) конденсаторов. При любой полярности подключения индикатор показывает одно и то же значение емкости конденсатора, но при неправильной полярности подключения, т.е. «+» конденсатора к «-» прибора, светодиод VD1 индицирует большой ток утечки (после заряда конденсатора светодиод продолжает ярко гореть), тогда как при правильной полярности подключения светодиод вспыхивает и постепенно гаснет, демонстрируя уменьшение зарядного тока до очень малой величины, практически до полного потухания (следует наблюдать 5-7 секунд), при условии, что испытуемый конденсатор обладает малым током утечки. Неполярные неэлектролитические конденсаторы имеют очень малый ток утечки, что и видно по очень быстрому и полному гашению светодиода. А если же ток утечки велик (сопротивление, шунтирующее конденсатор мало), т.е. конденсатор старый и «течет», то свечение светодиода видно уже при Rутечки = 100 кОм, а при меньших шунтирующих сопротивлениях светодиод горит еще ярче.
Таким образом можно по свечению светодиода определять полярность электролитических конденсаторов: при том подключении, когда ток утечки меньше (светодиод менее ярок) - полярность конденсатора соответствует полярности прибора.

Важное замечание!

Для большей точности показаний любое измерение следует повторять не менее 2-х раз, т.к. в первый раз часть тока заряда идет на создание оксидного слоя конденсатора, т.е. показания емкости чуть-чуть занижены.

РадиоХобби 5"2000

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
DA1, DA2 Микросхема К140УД608 2 К140УД708 или КР544 В блокнот
VT1, VT2 Биполярный транзистор

КТ315Б

2 В блокнот
VD2, VD3 Диод

КД521А

2 КД522 В блокнот
С1 2.2 мкФ 1 В блокнот
С2 Электролитический конденсатор 22 мкФ 1 В блокнот
R1 Резистор

1.3 Ом

1 В блокнот
R2, R4, R6 Подстроечный резистор 100 кОм 3 В блокнот
R3 Резистор

470 кОм

1 В блокнот
R5 Резистор

30 кОм

1 В блокнот
R7, R8 Подстроечный резистор 10 кОм 2 В блокнот
R9 Подстроечный резистор 2.2 кОм 1 В блокнот
R10, R11 Подстроечный резистор 470 Ом 2 В блокнот
R12, R13 Резистор

1 кОм

2 В блокнот
R14 Резистор

13 кОм

1

Огромная подборка схем, руководств, инструкций и другой документации на различные виды измерительной техники заводского изготовления: мультиметры, осциллографы, анализаторы спектра, аттенюаторы, генераторы, измерители R-L-C, АЧХ, нелинейных искажений, сопротивлений, частотомеры, калибраторы и многое другое измерительное оборудование.

В процессе эксплуатации внутри оксидных конденсаторов постоянно происходят электрохимические процессы, разрушающие место соединения вывода с обкладками. И из-за этого появляется переходное сопротивление, достигающее иногда десятков Ом. Токи Заряда и разряда вызывают нагрев этого места, что еще больше ускоряет процесс разрушения. Еще одной частой причиной выхода из строя электролитических конденсаторов является "высыхание", электролита. Чтоб уметь отбраковывать такие конденсаторы предлагаем радиолюбителям собрать эту несложную схему

Идентификация и проверка стабилитронов оказывается несколько сложнее чем проверка диодов, т.к для этого нужен источник напряжения, превышающий напряжение стабилизации.

С помощью этой самодельной приставки вы сможете одновременно наблюдать на экране однолучевого осциллографа сразу за восемью низкочастотными или импульсными процессами. Максимальная частота входных сигналов не должна превышать 1 МГц. По амплитуде сигналы должны не сильно отличаться, по крайней мере, не должно быть более 3-5-кратного отличия.

Устройство расчитано на проверку почти всех отечественных цифровых интегральных микросхем. Им можно проверить микросхемы серий К155, К158, К131, К133, К531, К533, К555, КР1531, КР1533, К176, К511, К561, К1109 и многие другие

Помимо измерения емкости, эту приставку можно использовать для измерения Uстаб у стабилитронов и проверки полупроводниковых приборов, транзисторов, диодов. Кроме того можно проверять высоковольтные конденсаторы на токи утечки, что весьма помогло мне при налаживание силового инвертора к одному медицинскому прибору

Эта приставка к частотомеру используется для оценки и измерения индуктивности в диапазоне от 0,2 мкГн до 4 Гн. А если из схемы исключить конденсатор С1 то при подключении на вход приставки катушки с конденсатором, на выходе будет резонансная частота. Кроме того, благодаря малому значению напряжения на контуре можно оценивать индуктивность катушки непосредственно в схеме, без демонтажа, я думаю многие ремонтники оценят эту возможность.

В интернете много разных схем цифровых термометров, но мы выбрали те которые отличается своей простотой, малым количеством радиоэлементов и надежностью, а пугаться того, что она собрана на микроконтроллере не стоит, т.к его очень легко запрограммировать.

Одну из схем самодельного индикатора температуры со светодиодным индикатором на датчике LM35 можно использовать для визуальной индикации плюсовых значений температуры внутри холодильника и двигателя автомобиля, а также воды в аквариуме или бассейне и т.п. Индикация выполнена на десяти обычных светодиодах подключенных к специализированной микросхеме LM3914 которая используется для включения индикаторов с линейной шкалой, и все внутренние сопротивления ее делителя обладают одинаковыми номиналами

Если перед вами встанет вопрос как измерить частоту вращения двигателя от стиральной машины. Мы подскажем простой ответ. Конечно можно собрать простой стробоскоп, но существует и более грамотная идея, например использованием датчика Холла

Две очень простые схемы часов на микроконтроллере PIC и AVR. Основа первой схемы микроконтроллер AVR Attiny2313, а второй PIC16F628A

Итак, хочу сегодня рассмотреть очередной проект на микроконтроллерах, но еще и очень полезный в ежедневных трудовых буднях радиолюбителя. Это цифровой вольтметр на микроконтроллере. Схема его была позаимствована из журнала радио за 2010 год и может быть с легкостью переделана под амперметр.

Эта конструкция описывает простой вольтметр, с индикатороми на двенадцати светодиодах. Данное измерительное устройство позволяет отображать измеряемое напряжение в диапазоне значений от 0 до 12 вольт с шагом в 1 вольт, причем погрешность в измерении очень низкая.

Рассмотрена схема измерителя индуктивности катушек и емкости конденсаторов, выполненная всего на пяти транзисторах и, несмотря на свою простоту и доступность, позволяет в большом диапазоне определять с приемлемой точностью емкость и индуктивность катушек. Имеется четыре поддиапазона для конденсаторов и целых пять поддиапазонов катушек.

Думаю большинству понятно, что звучание системы во многом определяется различным уровнем сигнала на ее отдельных участках. Контролируя эти места, мы можем оценить динамику работы различных функциональных узлов системы: получить косвенные данные о коэффициенте усиления, вносимых искажениях и т.п. Кроме того, результирующий сигнал просто не всегда можно прослушать, поэтому и, применяются различного рода индикаторы уровня.

В электронных конструкциях и системах встречаются неисправности, которые возникают достаточно редко и их очень сложно вычислить. Предлагаемое самодельное измерительное устройство используется для поиска возможных контактных проблем, а также дает возможность проверять состояние кабелей и отдельных жил в них.

Основой этой схемы является микроконтроллер AVR ATmega32. ЖК дисплей с разрешением 128 х 64 точек. Схема осциллографа на микроконтроллере предельно проста. Но есть один существенный минус - это достаточно низкая частота измеряемого сигнала, всего лишь 5 кГц.

Эта приставка здорово облегчит жизнь радиолюбителя, в случае если у него появится необходимость в намотке самодельной катушки индуктивности, или для определения неизвестных параметров катушки в какой либо аппаратуре.

Предлагаем вам повторить электронную часть схемы весов на микроконтроллере с тензодатчиком, прошивка и чертеж печатной платы к радиолюбительской разработке прилагаеться.

Самодельный измерительный тестер обладает следующими Функциональными возможностями: измерение частоты в диапазоне от 0.1 до 15000000 Гц с возможностью изменения времени измерения и отображением значение частоты и длительности на цифровом экране. Наличие опции генератора с возможностью регулировки частоты во всем диапазоне от 1-100 Гц и выводом результатов на дисплей. Наличие опции осциллограф с возможностью визуализации формы сигнала и измерения его амплитудного значения. Функция измерения емкости, сопротивления, а также напряжения в режиме осциллографа.

Простым методом измерения тока в электрической цепи является способ измерение падения напряжения на резисторе, соединенным последовательно с нагрузкой. Но при протекании тока через это сопротивление, на нем генерируется ненужная мощность в виде тепла, поэтому его необходимо выбрать минимально возможной величиной, что ощутимо усиливает полезный сигнал. Следует добавить, что рассмотренные ниже схемы позволяют отлично измерять не только постоянный, но и импульсный ток, правда, с некоторым искажением, определяемый полосой пропускания усилительных компонентов.

Устройство используется для измерения температуры и относительной влажности воздуха. В качестве первичного преобразователя взят датчик влажности и температуры DHT-11. Самодельный измерительный прибор можно использовать в складских и жилых помещениях для мониторинга температуры и влажности, при условии, что не требуется высокая точность результатов измерений.

В основном для измерения температуры применяются температурные датчики. Они имеют различные параметры, стоимость и формы исполнения. Но у них имеется один большой минус, ограничивающий практику их использования в некоторых местах с большой температурой среды объекта измерения с температурой выше +125 градусов по Цельсию. В этих случаях намного выгоднее использовать термопары.

Схема межвиткового тестора и его работа довольна проста и доступна для сборки даже начинающими электронщиками. Благодаря этому прибору сможно проверить практически любые трансформаторы, генераторы, дроссели и катушеки индуктивности номиналом от 200 мкГн до 2 Гн. Индикатор способен определить не только целостность исследуемой обмотки, но и отлично выявляет межвитковое замыкание, а кроме того им можно проверить p-n переходы у кремниевых полупроводниковых диодов.

Для измерения такой электротехнической величины, как сопротивление используется измерительный прибор называемый Омметр. Приборы, измеряющие только одно сопротивление, в радиолюбительской практике используются достаточно редко. Основная масса пользуется типовым мультиметров в режиме измерения сопротивления. В рамках данной темы рассмотрим простую схему Омметра из журнала Радио и еще более простую на плате Arduino.

Простые измерители емкости

Многие современные и некоторые не очень современные мультиметры имеют функцию измерения емкости. Если же такого мультиметра нет, а есть только прибор, которым можно измерять сопротивление и ток, то несложные приспособления к нему позволят проверить работоспособность и узнать емкость неполярных и даже полярных конденсаторов емкостью от единиц или десятков пикофарад до сотен и тысяч микрофарад. О таких приставках и рвссказывает автор публикуемой статьи.

Вначале упомяну так называемый метод баллистического гальванометра, или, как его называют в просторечии, метод отскока стрелки. Под отскоком понимают кратковременное отклонение стрелки. Этот метод вовсе не требует дополнительных приспособлений и позволяет грубо оценить параметры конденсатора, сравнивая его с заведомо исправным. Для этого мультиметр включают на предел измерения сопротивления и щупами дотрагиваются до выводов предварительно разряженного конденсатора (рис. 1). Ток зарядки вызовет кратковременное отклонение стрелки, тем большее, чем больше емкость конденсатора. Пробитый конденсатор имеет сопротивление, близкое к нулевому, а конденсатор с оборванным выводом не вызовет никакого отклонения стрелки омметра.

На пределе "Омы" удается проверять конденсаторы емкостью в тысячи микрофарад. При проверке оксидных конденсаторов надо соблюдать полярность, предварительно определив, на каком из выводов мультиметра присутствует плюсовое напряжение (полярность выводов мультиметра в режиме измерения сопротивлений может и не совпадать с полярностью в режиме измерения токов или напряжений). На пределе "кОм х 1" можно проверять конденсаторы емкостью в сотни микрофарад, на пределе "кОм х 10" — в десятки микрофарад, на пределе "кОм х 100" — в единицы микрофарад и, наконец, на пределе "кОм х 1000" или "МОм" — в доли микрофарады. Но конденсаторы емкостью в сотые доли микрофарады и менее дают слишком малое отклонение стрелки, поэтому судить об их параметpax становится трудно.

На рис. 2 приведена схема измерения емкости с помощью понижающего трансформатора и диодного моста. Так удается измерять емкости от тысячи пикофарад до единиц микрофарад. Отклонение стрелки прибора здесь стабильное, поэтому считывать показания легче. Ток в цепи миллиамперметра РА1 пропорционален напряжению вторичной обмотки трансформатора, частоте тока и емкости конденсатора. При частоте сети 50 Гц, а это наш бытовой стандарт, и вторичном напряжении трансформатора 16 В, ток через конденсатор емкостью 1000 пФ будет около 5 мкА, через 0,01 мкФ — 50 мкА, через 0,1 мкФ — 0,5 мА и через 1 мкФ — 5 мА. Калибровать или проверять показания также можно с помощью заведомо исправных конденсаторов известной емкости.

Резистор R1 служит для ограничения тока до значения 0,1 А в случае короткого замыкания измерительной цепи. Большой погрешности в показания на указанных пределах измерений этот резистор не вносит. Трансформатор понижающий, лучше малогабаритный, подобный тем, что используют в маломощных блоках питания (сетевых адаптерах). На вторичной обмотке он должен обеспечивать переменное напряжение 12...20 В.

Работает устройство следующим образом. Когда частота колебательного контура L1C2 в цепи коллектора транзистора VT1 оказывается близкой к частоте основного резонанса кварцевого резонатора ZQ1, возбудившийся генератор потребляет минимальный ток. Омметр, который питает устройство энергией, уменьшение тока будет воспринимать как увеличение измеряемого сопротивления. Таким образом, с помощью омметра удается контролировать процесс настройки контура в резонанс конденсатором переменной емкости (КПЕ) С2. Частота генератора определяется резонансной частотой кварцевого резонатора, а емкость и индуктивность колебательного контура при резонансе взаимосвязаны в соответствии с формулой Томсона : f = 1/2WLC. Изменяя индуктивность катушки контура, необходимо добиться, чтобы резонанс наблюдался при емкости КПЕ, близкой к максимальной. Контролируемые конденсаторы подключают параллельно КПЕ, при этом резонанс будет наблюдаться при другом положении ротора КПЕ. Его емкость уменьшится на величину искомой.

Функциональную схему омметра и особенности его подключения можно посмотреть в статье . Желательно выбрать предел, на котором омметр развивает ток короткого замыкания порядка 1 ...2 мА, и определить полярность выходного напряжения. При неправильной полярности подключения омметра устройство не заработает, хотя и не выйдет из строя. Измерить напряжение холостого хода, ток короткого замыкания омметра и определить его полярность на различных пределах измерения сопротивления можно с помощью другого прибора. С помощью описанной приставки можно измерять индуктивность катушек в пределах приблизительно 17...500 мкГн. Это при использовании кварцевого резонатора на частоту 1 МГц и КПЕ емкостью 50...1500пФ. Катушку для этого устройства делают сменной и калибруют прибор, используя эталонные индуктивности. Можно также использовать приставку как кварцевый калибратор.

Вместо устройства по схеме рис. 3 можно предложить менее громоздкое, в том отношении, что не потребуются КПЕ, кварц и катушка. Его схема показана на рис. 4. Назову эту приставку "Преобразователь емкости в активное сопротивление с питанием от омметра". Она представляет собой двухкаскадный УПТ на транзисторах VT1 и VT2 разной структуры и непосредственной связью между каскадами. Измеряемый конденсатор Сх включают в цепь положительной обратной связи с выхода на вход УПТ. При этом возникает релаксационная генерация и транзисторы часть времени остаются закрытыми. Этот промежуток времени пропорционален емкости конденсатора.

Пульсации выходного тока фильтрует блокировочный конденсатор С1. Усредненный ток, потребляемый устройством, при увеличении емкости конденсатора Сх становится меньше, и омметр воспринимает это как увеличение сопротивления. Устройство уже начинает реагировать на конденсатор емкостью 10 пФ, а при емкости 0,01 мкФ его сопротивление становится большим (сотни килоом). Если сопротивление резистора R2 уменьшить до 100 кОм, то интервал измеряемых емкостей составит 100 пФ...0,1 мкФ. Начальное сопротивление устройства — около 0,8 кОм. Здесь следует отметить, что оно нелинейное и зависит от протекающего тока. Поэтому на разных пределах измерения и с разными приборами показания будут различаться, и для проведения измерений необходимо сравнивать искомые показания с показаниями, даваемыми образцовыми конденсаторами.

С. Коваленко, г. Кстово Нижегородской обл. Радио 07-05.
Литература:
1. Пилтакян А. Простейшие измерители L и С:
Сб.: "В помощь радиолюбителю", вып. 58, с.61—65. — М.: ДОСААФ, 1977.
2. Поляков В. Теория: Понемногу — обо всем.
Расчет колебательных контуров. — Радио, 2000, № 7, с. 55, 56.
3. Поляков В. Радиоприемник с питанием от... мультиметра. — Радио, 2004, № 8, с. 58.

Измеритель емкости конденсаторов своими руками

Представляю вашему вниманию, как просто сделат ь измеритель ЭПС конденсаторов , который собирается буквально за пару часов буквально "На коленке". Сразу предупреждаю, что не являюсь автором этой идеи, данную схему уже сотню раз повторили разные люди. В схеме всего десять деталей, и любой цифровой мультиметр, с ним ничего колдовать не нужно, просто подпаиваемся к точкам и все.

Схема устройства измеритель эпс :


О деталях измерителя :

Трансформатор с соотношением витков 11\1. Первичную обмотку нужно мотать виток к витку на кольце М2000 К10х6х3, на всей окружности кольца (изолированого), вторичку желательно распределить равномерно, с небольшим натягом.

Диод D1 может быть любой, на частоту более 100 КГц и напряжение более 40В, но лучше Шоттки.

Диод D2 - супресор на 26В-36В. Транзистор - типа КТ3107, КТ361 и аналогичные.


Измерения ЭПС проводить на измерительном пределе 20В. При подключении разъёма измерительной выносной "головки" прибор "автоматически" переходит в режим измерения ЭПС, об этом свидетельствует показание примерно 36В прибора на пределе 200В и 1000В (зависит от применённого супресора), а на пределе 20В - показание "выход за предел измерения".

При отключении разъёма измерительной выносной "головки" прибор автоматически переходит штатный режим мультиметра.

Итого : включаем адаптер - автоматом включается измеритель, выключили - штатный мультиметр. Теперь калибровка , ничего заумного, обычный резистор (не проволочный) подгоняем шкалу. Вот примерно как это выглядело:


Если закоротить щупы , на индикаторе 0.00-0.01, вот одна сотая и есть погрешность в интервале измерения до 1 Ом, значения ЭПС конденсаторов сравнивал с заводским измерителем.

Что еще почитать