Напряжение в грунте под подошвой фундамента. Исследование состояния грунтов под подошвой фундаментов с помощью современных экспресс-методов

Общие положения. При взаимодействии фундаментов и сооружений с грунтами основания на поверхности контакта возникают контактные напряжения. Знание контактных напряжений необходимо как для расчета напряжений в основании, создаваемых сооружением, так и для расчетов самих конструкций.

Отметим, что расчет сооружений на действие контактных напряжений обычно рассматривается в курсе строительной механики.

Характер распределения контактных напряжений зависит от жесткости, формы и размеров фундамента или сооружения и от жесткости (податливости) грунтов основания. Различают три случая, отражающих способности сооружения и основания к совместной деформации:

1) абсолютно жесткие сооружения , когда деформируемость сооружения ничтожно мала по сравнению с деформируемостью основания, и при определении контактных напряжений сооружение можно рассматривать как недеформируемое;

2) абсолютно гибкие сооружения , когда деформируемость сооружения настолько велика, что оно свободно следует за деформациями основания;

3) сооружения конечной жесткости , когда деформируемость сооружения соизмерима с деформируемостью основания; в этом случае они деформируются совместно, что вызывает перераспределение контактных напряжений.

Характерными примерами абсолютно жестких конструкций являются массивные фундаменты под мостовые опоры, дымовые трубы, тяжелые прессы, кузнечные молоты и т. д., абсолютно гибких – земляные насыпи, днища металлических резервуаров и т. п. Большинство сооружений (плитные фундаменты, балки, ленточные фундаменты) по условиям работы конструкций имеют конечную жесткость.

Критерием оценки жесткости сооружения может служить показатель гибкости по М.И. Горбунову-Посадову

е ≈ 10 (El 3 /E к h 3), (8.1)

где Е и Е к - модули деформации грунта основания и материала конструкции; l и h - длина и толщина конструкции.

Конструкция сооружения или фундамента считается абсолютно жесткой, если t≤1 . В первом приближении жесткость конструкции можно оценить исходя из соотношения ее толщины и длины. При h/l>1/3 конструкция может рассматриваться как абсолютно жесткая.

Существенное значение имеет также соотношение длины l и ширины b сооружения. При 1/b≥0 распределение контактных напряжений соответствует случаю плоской задачи, при. l/b < 10 – пространственной.

При определении контактных напряжений важную роль играет выбор расчетной модели основания и метода решения контактной задачи, причем расчетная модель основания часто бывает не связана собственно с моделью грунтов, слагающих массив, поэтому модели грунтового основания для расчетов контактных напряжений иногда называют контактными моделями.



Наибольшее распространение в инженерной практике получили следующие модели основания: местных упругих деформаций и упругого полупространства .

Основные предпосылки расчета контактных напряжений для случая плоской задачи заключаются в следующем. Из балки (рис. 8.2, а ) вырезается полоса длиной 1 м (рис. 8.2, б ) и рассматривается распределение напряжений в разных точках контакта этой полосы с основанием по оси х. Принимается, что совместная деформация сооружения (полосы) и основания происходит без разрыва сплошности, т. е. в каждой точке контакта прогиб полосы и осадка основания равны и определяются величиной w(х). Считая справедливой гипотезу плоских сечений, уравнение изогнутой оси полосы записывают в виде

, (8.2)

где D = E к I к /(1 – v к 2) цилиндрическая жесткость полосы; f(x) интенсивность заданной на полосу нагрузки; р(х) – интенсивность неизвестной эпюры контактных напряжений. Напомним, что индекс «к» относится к конструкции; следовательно, Е к и v к – соответственно модуль упругости и коэффициент Пуассона материала полосы; I к – момент инерции ее поперечного сечения.

В уравнении (8.2) содержатся две неизвестные величины: w(x) и р(х). Следовательно, для решения задачи необходимо введение дополнительного условия. Это условие определяется в зависимости от принятия той или иной модели: местных упругих деформаций или упругого полупространства.

Модель местных упругих деформаций. Предпосылки этой модели впервые были сформулированы русским академиком Фуссом в 1801 г., а сама модель разработана в 1867 г. Винклером для расчетов железнодорожных шпал. В дальнейшем модель местных упругих деформаций была развита в работах Н. П. Пузыревского, С. П. Тимошенко, А. Н. Крылова, П. Л. Пастернака и др.

Рис. 8.2. Схема балки (а) и расчетная схема для случая плоской задачи (б)

Согласно этой модели, реактивное напряжение в каждой точке поверхности контакта прямо пропорционально осадке поверхности основания в той же точке:

p(x) = kw(x), (8.3)

где к - коэффициент пропорциональности, часто называемый коэффициентом постели , Па/м.

Схема деформирования такого основания показана на рис. 8.3, а. Видно, что в соответствии с моделью местных упругих деформаций осадки поверхности основания за пределами габаритов фундамента отсутствуют, т. е. фундамент как бы установлен на пружинах, сжимающихся только в пределах его контура.

Рис. 8.3. Деформации поверхности основания: а – по модели упругих деформаций; б – по модели упругого полупространства

Модель упругого полупространства. Эта модель была предложена Г. Э. Проктором в 20-х годах нашего столетия и развита благодаря работам Н. М. Герсеванова, М. И. Горбунова-Посадова, Б. Н. Жемочкина, А. П. Синицына и других ученых.

В отличие от предыдущей модели в этом случае поверхность грунта оседает как в пределах площади загрузки, так и за ее пределами (рис. 8.3, б), причем кривизна прогиба зависит от механических свойств грунтов и мощности сжимаемой толщи в основании.

В случае плоской деформации прогиб поверхности под действием сосредоточенной силы Р описывается уравнением

(8.4)

где С = Е/(1 – ν 2) – коэффициент жесткости основания; х - координата точки поверхности, в которой определяется осадка; ζ - координата точки приложения силы Р ; D - постоянная интегрирования. При определении прогибов поверхности от действия распределенной нагрузки уравнение (8.4) следует проинтегрировать по площади загружения.

Недостаток модели упругого полупространства заключается в том, что в ней не ограничивается мощность сжимаемой толщи в основании сооружения. В реальных условиях взаимодействия фундамента и основания мощность сжимаемой толщи обычно бывает ограничена, что влияет на характер распределения контактных напряжений. В связи с этим разработаны различные модификации модели упругого слоя грунта, подстилаемого недеформируемой толщей, приведенные в работах О. Я. Шехтер, К. Е. Егорова, И. К. Самарина, Г. В. Крашенинниковой и др.

Общая схема определения контактных напряжений с использованием указанных выше моделей заключается в совместном решении уравнения (8.2) и условия (8.3) в случае модели местных упругих деформаций или уравнений (8.2) и условия типа (8.4) в случае модели упругого полупространства. Методы решения этих задач приведены, например, в учебнике П. Л. Иванова (1991).

Для практических расчетов контактных напряжений используются приведенные в табличной форме решения М. И. Горбунова-Посадова, Б. Н. Жемочкина, А. П. Синицьша, Г. В. Крашенинниковой и др. Наиболее полные сведения по этому вопросу представлены в монографии М. И. Горбунова-Посадова, Т. А. Маликовой, В. И. Соломина «Расчет конструкций на упругом основании», удостоенной в 1987 г. Государственной премии СССР.

Область применения различных моделей. Практика расчетов показывает, что модель местных упругих деформаций позволяет получить хорошее совпадение с действительностью при возведении фундаментов на сильносжимаемых грунтах (при Е≤ 5 МПа), на лёссовых просадочных грунтах, а также при ограниченной толще сжимаемых грунтов, подстилаемых практически недеформируемыми, например скальными породами. Модель упругого полупространства применима при наличии в основании достаточно плотных грунтов и при не слишком больших площадях опорных поверхностей. Для сооружений с площадью опирания в десятки и сотни квадратных метров более близкие к действительности результаты дает модель упругого слоя ограниченной мощности.

Контактные напряжения на подошве центрально-загруженных абсолютно жестких фундаментов. При определении контактных напряжений в этом случае исходят из того, что вертикальные перемещения любой точки поверхности грунта в уровне подошвы одинаковы, т. е. w(x,у)=const . Тогда для круглого в плане фундамента контактные напряжения определятся выражением

(8.5)

где р m - среднее напряжение под подошвой фундамента радиусом r ; ρ - расстояние от центра фундамента до точки, в которой определяется ордината контактного напряжения р(ρ).

Аналогичным образом определяются и контактные напряжения под жестким полосовым фундаментом в случае плоской задачи:

(8.6)

где х - расстояние от середины фундамента до рассматриваемой точки; а = b/2 - полуширина фундамента.

Приведенные решения показывают, что теоретически эпюра контактных напряжений под жестким фундаментом имеет седлообразный вид с бесконечно большими значениями напряжений по краям (при ρ = r или x=b/2 ). Однако вследствие пластических деформаций грунта в действительности контактные напряжения характеризуются более пологой кривой и у края фундамента достигают значений, соответствующих предельной несущей способности грунта (пунктирная кривая на рис. 8.4, а).

Рис. 8.4. Эпюры контактных напряжений: a - под жестким круглым штампом; б- под плоским фундаментом при различном показателе гибкости

Изменение показателя гибкости существенно сказывается на изменении характера эпюры контактных напряжений. На рис. 8.4, б в качестве примера приведены контактные эпюры для случая плоской задачи при изменении показателя гибкости t от 0 (абсолютно жесткий фундамент) до 5.

Как отмечалось выше, достоверное знание контактных напряжений необходимо для расчетов конструкции фундаментов сооружений, взаимодействующих с грунтом. При расчетах напряжений в основаниях от действия нагрузок, соответствующих контактным напряжениям, часто оказывается возможным вводить существенные упрощения. Это связано с тем, что неравномерное распределение контактных напряжений по подошве фундамента оказывает заметное влияние на изменение напряжений лить в верхней части основания на глубину порядка половины ширины фундамента.

Упрощенное определение контактных напряжений. Если контактные напряжения по подошве фундамента определяются для последующих расчетов напряжений в основании, то допускается независимо от жесткости фундамента.использовать формулы внецентренного сжатия. Тогда для центрально-нагруженного силой Р фундамента будет иметь место равномерное распределение напряжений по его подошве: р=Р/А, где А - площадь фундамента. В случае плоской задачи при нагружении фундамента силой Р и моментом М, действующим в этой плоскости, краевые значения контактных напряжений определятся выражением

(8.7)

где W - момент сопротивления площади подошвы выделенной полосы фундамента. Распределение контактных напряжений между этими значениями будет иметь линейный характер.

Теперь уже распределение напряжений в основании ниже подошвы фундамента можно рассчитать, если рассматривать полученную таким образом эпюру контактных напряжений как абсолютно гибкую местную нагрузку, действующую в этой плоскости.

Расчет преследует цель определить средние, максимальные и минимальные напряжения под подошвой фундамента и сравнить их с расчетным сопротивлением грунта.

Имеем первоначальные размеры фундамента6 х10,4м.

Определим среднее, максимальные и минимальные напряжения под подошвой фундамента и сравниваем их с расчетным сопротивлением грунта:

P= N I /A ≤ R/γ п; (3.8)

P max = N I /A+M I /W ≤γ c *R/γ п; (3.9)

P min = N I /A- M I /W ≥0; (3.10)

где: P, P max , P min - среднее максимальное и минимальное давление подошвы фундамента на основание;

N I – расчетная вертикальная нагрузка на основание с учетом гидростатического давления, Мн;

M I – расчетный момент относительно оси проходящей через центр тяжести подошвы фундамента, м 2 ;

W- момент сопротивления по подошве фундамнта,м 3 ;

А- площадь подошвы фундамента, м 2 ;

R- расчетное сопротивление грунта под подошвой фундамента, МПА;

γ с = 1,2- коэффициент условий работ;

γ п = 1,4 – коэффициент надежности по назначению сооружения

N I = 1,1(Р 0 +Р п +Р ф +Р в +Р г)+γ ƒ *Р к (3.11)

где: Р ф, Р г – нагрузка от веса фундамента и грунта на его уступах с учетом взвешивающего действия воды;

h ф – высота конструкции фундамента, h ср = 6 м

V ф =(6*10,4**1)+(5*9,4*1)+(4*8,4*1)+(3*7,4*1)=165,2 МН

Р ф = V ф *γ бет =165,2*0,024=3,96МН

Р г = V гр *γ SB = 0,21 МН

N I = 1,1(5,50+1,49+3,96+0+0,21)+(6,60*1,13)=19,73 МН

P =19,73/6*10,4≤0,454/1,4=0,316≤0,324

M I = 1.1*T*(1.1+h 0 +h ф)=(1,1*0,66)*(1,1+8,2+6)=11,10 МН*м

W= ℓ*b 2 /6=10,4*6²/6=62,4м

P max =19,73/6*10,4+11,10/62,4≤1,2*0,454/1,4=0,493≤0,389

P min =19,73/62,4-11,10/62,4=0,316-0,177=0,135≥0

Проверка сошлась. Принятые размеры подошвы фундамента равны: b = 6 м, l = 10,4 м. Высота 6м.

3.4. Расчет осадки фундамента.

Метод послойного суммирования для расчета осадок фундамента шириной менее 10м согласно СНиП 2 02. 01 – 83.

Величина осадки фундамента определяется по формуле:

S=β

Где: β – безразмерный коэффициент, равный 0,8;

σ zpi – среднее вертикальное (дополнительное) напряжение в i-м слое грунта;

h i , E i – соответственно толщина и модуль деформации i-го слоя грунта (табл. 1.2);

n – число слоев, на которое разбита сжимаемая толщина основания.

Техника расчета сводится к следующему.

1.Сжимаемую толщу грунта, расположенную ниже подошвы слоя фундамента, разбиваем на элементарные слои:

h i ≤ 0,4*b =0,4*6=2,4м

где: b =6 м – ширина подошвы фундамента; границы слоев должны совпадать с границами слоев грунтов и уровнем подземных вод. Глубина разбивки должна быть примерно равна 3b = 3*6 = 18м

2. Определяем значения вертикальных напряжений от собственного веса грунта на уровне подошвы фундамента и на границе каждого подслоя:

σ zg = σ zgo +∑γ i *h i ;

где: σ zgo – вертикальное напряжение от собственного веса грунта на уровне подошвы фундамента;

γ i – удельный вес грунта i-го слоя;

h i - толщина i-го слоя грунта.

σ zgo =0,00977*3=0,063мпа

3. Определяем дополнительное вертикальное напряжение в грунтах под подошвой фундамента:

σ z р o =Р- σ zgo =0,178-0,063 = 0,115МПа

среднее давление на грунт от нормативных постоянных нагрузок:

P = N II /A = 11,16/62,4= 0,178МПа

N II = Р 0 +Р п +Р ф +Р в +Р г =(5,50+1,49+3,96+0+0,21)=11,16Н

Значения ординат эпюры распределения дополнительных вертикальных напряжений в грунте:

σ zpi = αi*σ zp 0 ;

где: α – коэффициент, принимаемый по таблице 3.4, в зависимости от формы подошвы фундамента и относительной глубины ζ = 2Z/b.

Вычисления проводятся в таблице 4.

4. Определяем нижнюю границу сжимаемой толщины – В. С. Она находится на горизонтальной плоскости, где соблюдается условие

σ zp ≤0.2*σ zg

    Определяем осадку каждого слоя фундамента

S = β*(σ zpi ср * h i /E i);

где: σ zpi ср – среднее дополнительное вертикальное напряжение в i-ом слое грунта, равное полу сумме указанных напряжений на верхних и нижних границах слоя.

β = 0,8 – безразмерный коэффициент для всех видов грунтов.

Осадка основания фундамента получается суммированием величины осадки каждого слоя. Она не должна превышать предельно допустимой осадки сооружения:

S n = 1.5√ℓ p =1,5√44=9,94см

Где: S n – предельно допустимая осадка, см;

ℓ p = 44 м. – длина меньшего примыкающего к опоре пролета, м.

Номер расчетного слоя

Глубина подошвы расчетного слоя от подошвы фундамента, Z i , м

Толщина слоя,h i , м

Расчетный удельный вес грунта, кН/м 3 γ

Природное давление σ zg на глубине z i , МПа

Коэффициент ζ=2Z i /b

Коэффициентα i

Дополнительное давление σ zp на глубине Z I ,кПа

Среднее дополнительное давление в слое σ zp ср, кПа

Модуль деформации грунта Е i , кПа

Осадка слоя S i , м

Расчет преследует цель определить среднее. Максимальное и минимальное напряжение под подошвой фундамента и сравнить их с расчётным сопротивлением грунта.

Где Р, Р max и Р min - соответственно среднее, максимальное и минимальное давление подошвы фундамента на основание;

N 1 - расчётная вертикальная нагрузка на основание с учетом гидростатического давления, если оно имеет место;

M 1 - расчётный момент относительно оси, проходящей через центр тяжести подошвы фундамента;

А – площадь подошвы;

W – момент сопротивления по подошве фундамента;

y с - коэффициент условий работы принимаем 1,2;

y n - коэффициент надежности по назначению сооружения, принимаем равным 1,4;

l- длина подошвы фундамента

b- ширина подошвы фундамента

R- расчётное сопротивление грунта под подошвой фундамента

Расчётная вертикальная нагрузка на основание определяется по формуле:

N 1 =1,1*(p o +p п +p ф +р в +р г)*у ƒ *р к,

Где p ф и р г - нагрузки от веса фундамента и грунта на его уступах, мН;

р в - нагрузка от веса воды, действующей на уступы фундамента (учитывается, если фундамент врезан в водонепроницаемый грунт), мН;

p п - вес пролётного строения, мН;

р к - ила, действующая от временной вертикальной подвижной нагрузки, мН;

p o - вес опоры, мН.

N 1 =1,1*(4,3+1,49)+1,13*6,6=13,00мН

Момент сопротивления по подошве фундамента будет равна:

W= W=

Расчётный момент относительно оси, проходящей через центр тяжести подошвы фундамента, будет равен:

M 1 =1,1*T*(1,1+h 0 +h ф)=1,1*0,66*(1,1+6,4+3,5)=7,98мН*м

Теперь проверим, выполняется ли условие напряжений под подошвой фундамента:

Р max =

P min =

Р max =

Р= - выполняется

Р max = - выполняется

P min = - выполняется

Все три условия прочности напряжений под подошвой фундамента выполняются, следовательно, расчёт произведен правильно.

3.5 Расчёт осадки фундамента

,где

Безразмерный коэффициент, равный 0,8;

G zpi -среднее вертикальное (дополнительное) напряжение в i-м слое грунта;

h i и E i -соответственно толщина и модуль деформации i-м слое грунта:

n – число слоев, на которое разбита сжимаемая толща основания.

Техника расчёта сводится к следующему:

1. Сжимаемую толщину грунтов, расположенную ниже подошвы фундамента, разбивают на элементарные слой толщиной h i , где b – ширина подошвы фундамента=5,44 м. толщина слоя принимается h i =2,0м.

Границы элементарных слоев должны совпадать с границами слоев грунтов и уровнем подземных вод.

Глубина разбивки должна быть примерно 3* b=3*5,44=16,3м

Разбиваем на 10 слоев. Данные расчёта заносятся в таблицу 2.

2. Определяем значения вертикальных напряжений от собственного веса грунта на уровне подошвы фундамента и на границе каждого подслоя

Вертикальное напряжение от собственного веса грунта на уровне подошвы фундамента

,

Где К к - геостатический коэффициент бокового давлении, равен 1;

z i =h ф - глубина подошвы фундамента (z i =3,5)

у – удельный вес грунта ниже уровня грунтовых вод (определяется с учетом взвешивающего действия воды) у sb =10 кН/м 2

Отсюда: кПа

z i - расстояние от подошвы расчётного слоя до подошвы фундамента;

у i - удельный вес грунтов i-го слоя. Удельный вес грунтов залегающих ниже уровня грунтовых вод или ниже воды в реке, но выше водоупора, должен определяться с учётом взвешивающего действия воды: В водоупоре напряжение от собственного веса грунта в любом горизонтальном сечении без учёта взвешивающего действия воды.

Определяем значения вертикальных напряжений от собственного веса грунта на границе каждого подслоя (данные заносим в табл.). По результатам расчёта строим эпюру вертикальных напряжений от собственного веса грунта.

3. Определяем дополнительное к природному вертикальное напряжение под подошвой фундамента по формуле:

Р- среднее давление на грунт от нормативных постоянных нагрузок

A – площадь подошвы фундамента,

N 11 - расчетная вертикальная сила

N 11= р 0 +р n +р г +р в, где

р 0 - вес опоры;

р n -вес пролетного строения;

р г - нагрузка от веса грунта на его уступах;

р в - нагрузка от веса воды, действующей на уступы фундамента (учитывается если фундамент резан водонепроницаемый грунт)

N 11 =4,3+1,49+5,6=11,39*10 3 =11390кН

Р= кН/м 2

Значение ординат эпюры распределения дополнительных вертикальных напряжений в грунте вычисляем по формуле:

Коэффициент, принимаемый из таблицы в зависимости от формы подошвы фундамента.

Соотношение сторон прямоугольного фундамента

и относительной глубины, равной

Находим по таблице коэффициент , вычисляем значения ординат эпюры распределения дополнительных вертикальных напряжений в грунте.


Расч. слой № слоя Толщина слоя, h, м z i , м кПа γ i , кН/м 3 0.2 2z/b Е 1 S i
кПа кПа
глина 2,8 10,0 7,0 142,38 137,19 13.000 0,057
глина 1,5 1,5 10,0 0.60 0,927 132,0 114,63 20.000 0,025
2,0 3,5 10,0 1,29 0,683 97,25 85,43 0,013
2.0 5,5 10,0 2,02 0,517 73,61 62,93 0,009
2.0 7,5 10,0 2,78 0,367 52,25 50,33 0,003
Песок мелкий 0,9 8,4 10,0 23,8 3,09 0,340 48,41 40,65 37.000 0,002
2,0 10,4 10.0 27,8 3,82 0,231 32,90 29,48 0,002
2,0 12,4 10,0 31,8 4,56 0,183 26,06 24,14 0,002
2,0 14,4 10.0 35,8 5,30 0,156 22,21 20,43 0,001
0.6 15,0 10,0 37,0 5,52 0,138 19,65 Итого: 0,114

4.Определяют нижнюю границу сжимаемой толщи (В.С). Она находится на горизонтальной плоскости, где соблюдается условие.

480 руб. | 150 грн. | 7,5 долл. ", MOUSEOFF, FGCOLOR, "#FFFFCC",BGCOLOR, "#393939");" onMouseOut="return nd();"> Диссертация - 480 руб., доставка 10 минут , круглосуточно, без выходных и праздников

Иванов, Антон Андреевич. Оценка несущей способности оснований щелевых фундаментов на основе анализа напряженного состояния грунтового массива и экспериментальных данных: диссертация... кандидата технических наук: 05.23.02 / Иванов Антон Андреевич; [Место защиты: Волгогр. гос. архитектурно-строит. ун-т].- Волгоград, 2013.- 164 с.: ил. РГБ ОД, 61 14-5/653

Введение

Переменные расчетные параметры .

Формулировка цели и постановка задач

Определение интервалов изменения численных значений переменных расчетных параметров, используемых при расчете несущей способности оснований щелевых фундаментов

Постановка задачи о несущей способности щелевого фундамента 12

Глава II. Расчет несущей способности щелевого фундамента на основе анализа напряженного состояния грунта в основании его подошвы методом комплексных потенциалов и экспериментальных данных 27

2.1. Некоторые сведения о методе комплексных потенциалов. Отображающая функция 27

2.2. Определение коэффициентов отображающей

функции 33

2.3. 48

2.4. Инженерный метод расчета несущей способности основания щелевого фундамента 60

Выводы по главе II 65

Глава III. Определение несущей способности однородного основания двухщелевого фундамента

3.1. Математический инструментарий исследований, описание и характеристики механико-математической модели и расчетных конечно-элементных схем для проведения компьютерного моделирования процесса образования и развития областей пластических деформаций 67

3.2. Анализ напряженного состояния однородного основания двухщелевого фундамента

3.3. Анализ процесса развития областей пластических деформаций в однородном основании двухщелевого фундамента 77

3.4. Инженерный метод расчета несущей способности однородного основания двухщелевого фундамента 83

Выводы по главе III 96

Глава IV. Экспериментальные исследования процесса зарождения областей пластических деформаций в основании щелевого фундамента на моделях из эквивалентных материалов 98

4.1. Требования, предъявляемые к эквивалентному материалу, и определение его физико-механических свойств 99

4.2. Экспериментальное определение первой критической нагрузки для модели щелевого фундамента 103

Основные выводы 114

Список использованной литературы

Введение к работе

Актуальность темы диссертации. Несущая способность основания щелевого фундамента складывается из несущей способности по его подошве и по его боковой поверхности. Кроме сил сопротивления, обусловленных внутренним трением и сцеплением грунта, по боковой поверхности и по подошве фундамента действуют дополнительные силы сопротивления, возникающие за счет: проникновения водно-коллоидного цементного раствора вглубь грунта и последующего его твердения с образованием тонкого грунтово-цементного слоя с кристаллическими связями; расширения бетона, содержащего расширяющийся портландцемент, при твердении. Необходимость учета этих сил, делает задачу о совершенствовании методов расчета несущей способности оснований щелевых фундаментов актуальной .

Цель диссертационного исследования сформулирована следующим образом:

Разработать инженерный метод расчета несущей способности щелевого фундамента, основанный на анализе напряженного состояния грунтового массива методами теории функций комплексного переменного и конечных элементов и экспериментального определения суммарных сил трения и сцепления между боковой поверхностью фундамента и вмещающим массивом грунта непосредственно на строительной площадке в реальных инженерно-геологических условиях.

Для достижения поставленной цели необходимо решить следующие задачи:

    Провести анализ существующих методов расчета несущей способности основания щелевых фундаментов и технической литературы, на основе которого определить интервалы изменения переменных расчетных параметров для проведения численного эксперимента.

    Разработать механико-математическую модель и определить численные значения коэффициентов отображающей функции, обеспечивающие конформное отображение полуплоскости с вырезом при заранее заданных величинах отношения ширины его основания к глубине (2b/h).

    Провести компьютерное моделирование процесса образования и развития областей пластических деформаций под подошвой щелевого фундамента, по результатам которого получить графические зависимости и их аналитические аппроксимации, позволяющие определять величину расчетного сопротивления и предельно допустимую нагрузку при условии учета только подошвы фундамента. Разработать компьютерную программу-калькулятор для автоматизации этого процесса.

    Разработать и получить охранный документ на полезную модель устройства для определения в полевых условиях суммарных сил трения и сцепления, действующих по контакту «боковая поверхность щелевого фундамента - грунтовый массив».

    Разработать механико-математическую модель и провести компьютерное моделирование процесса трансформации напряженного состояния и образования и развития областей пластических деформаций в основании двух щелевого фундамента методом конечных элементов. Получить графические и аналитические зависимости размеров ОПД от физико-механических свойств грунта, размеров фундамента и интенсивности внешнего воздействия. Предложить инженерный метод расчета несущей способности двух щелевого фундамента, формализовав его в компьютерную программу – калькулятор.

    Провести экспериментальные исследования процесса образования и развития областей пластических деформаций под подошвой щелевого фундамента, а полученные результаты сопоставить с результатами аналитических исследований.

    Осуществить внедрение результатов диссертационного исследования в строительную практику.

Достоверность результатов диссертационного исследования, его выводов и рекомендаций обоснованы:

    Рабочими гипотезами, опирающимися на фундаментальные положения линейной теории упругости (методы теории функций комплексного переменного и конечных элементов), теории пластичности, инженерной геологии, грунтоведения и механики грунтов;

    Использованием в качестве инструментария при теоретических исследованиях верифицированных компьютерных программ, зарегистрированных в государственном реестре программного обеспечения;

    Удовлетворительной сходимостью результатов экспериментов по определению критических нагрузок для моделей оснований щелевых фундаментов, выполненных из эквивалентных материалов, с результатами сопоставительных расчетов реальных грунтовых массивов при адекватных значениях коэффициента бокового давления грунта с поведением этих объектов в природе.

    Патентом РФ на полезную модель.

Научная новизна диссертационной работы состоит в том, что

Установлены и изучены закономерности трансформирования полей напряжений и протекания процесса зарождения и развития областей пластических деформаций под подошвой и по контакту «боковая поверхность щелевого фундамента – грунт» в процессе нагружения фундамента вплоть до достижения критических нагрузок;

Построены графические зависимости размеров (глубины развития под подошву и вверх по контакту «фундамент – грунт») областей пластических деформаций от величины интенсивности внешнего воздействия для всех рассмотренных в диссертации численных значениях переменных расчетных параметров для двухщелевого фундамента; аналитические аппроксимации этих зависимостей составили базу данных компьютерной программы-калькулятора для расчета несущей способности двухщелевого фундамента;

Для определения несущей способности по подошве щелевого фундамента использованы методы теории функций комплексного переменного, позволившие полностью исключить из рассмотрения боковую поверхность щелевого фундамента;

Для определения несущей способности боковой поверхности щелевого фундамента разработана и запатентована полезная модель устройства для определения суммарных сил трения и сцепления, возникающих по контакту «боковая поверхность щелевого фундамента – грунт» при бетонировании враспор без опалубки;

Разработан инженерный метод расчета несущей способности основания щелевого фундамента, основанный на использовании запатентованного устройства и компьютерной программы-калькулятора для расчета несущей способности по подошве щелевого фундамента;

Практическая значимость работы . Диссертационная работа является частью научных исследований, проводимых на кафедрах «Прикладная математика и вычислительная техника» и «Гидротехнические и земляные сооружения» ВолгГАСУ в 2010-2013 г.г.

Полученные при работе над диссертацией результаты могут быть использованы для :

расчета величины несущей способности основания щелевого фундамента при широком диапазоне изменения численных значений переменных расчетных параметров, включающих геометрические размеры фундамента и физико-механические характеристики грунтов основания;

экспериментального определения непосредственно на строительной площадке суммарных сил трения и сцепления, возникающих по его боковой поверхности при бетонировании тела фундамента враспор без опалубки;

расчета несущей способности основания двухщелевого фундамента при различных значениях его геометрических размеров и физико-механических характеристиках вмещающего грунтового массива;

предварительной оценке несущей способности оснований щелевых фундаментов на стадии предварительного проектирования;

оценки возможной погрешности расчетов несущей способности по боковой поверхности щелевого фундамента известными методами при помощи запатентованного автором устройства.

Апробация работы. Основные результаты выполненных автором диссертационной работы исследований доложены, обсуждены и опубликованы в материалах: ежегодных научно-технических конференций преподавателей, аспирантов и студентов Волгоградского государственного архитектурно-строительного университета (Волгоград, ВолгГАСУ, 2010-2013 г.г.), Всероссийской научно-технической конференции «Механика грунтов в геотехнике и фундаментостроении» (Новочеркасск, ЮРГТУ-НПИ, 2012 г.); III Международной научно-технической конференции «Инженерные проблемы строительного материаловедения, геотехнического и дорожного строительства» (Волгоград, ВолгГАСУ, 2012 г.); Всеукраинского научно-практического семинара с участием иностранных специалистов «Современные проблемы геотехники» (Украина, Полтава, ПНТУ им. Ю.Кондратюка, 2012 г.); на научных семинарах кафедр «Прикладная математика и вычислительная техника» и «Гидротехнические и земляные сооружения» ВолгГАСУ (Волгоград, ВолгГАСУ, 2010-2013 г.г.).

разработке и составлении механико-математических моделей и расчетных схем методов теории функций комплексного переменного и МКЭ исследуемых объектов (коэффициенты отображающей функции, граничные условия, размеры, вид, степень дискретизации);

проведении, компьютерного моделирования процессов образования и развития областей пластических деформаций в основаниях щелевого и двухщелевого фундаментов, обработке, анализе и систематизации полученных результатов, построении графических зависимостей и их аналитическом описании;

проведении патентного поиска, анализе его результатов, разработке полезной модели и ее патентовании;

разработке инженерных методов расчета несущей способности щелевого и двухщелевого фундаментов;

формировании баз данных и разработке компьютерных программ-калькуляторов, предназначенных для оценки несущей способности щелевых фундаментов;

внедрении результатов диссертационной работы в строительную практику на стадии проектирования.

На защиту выносятся :

    Механико-математические модели и расчетные схемы методов теории функций комплексного переменного и метода конечных элементов исследуемых объектов.

    Установленные закономерности протекания процесса образования и развития областей пластических деформаций под подошвами и по боковой поверхности щелевых фундаментов.

    Прием исключения из рассмотрения боковой поверхности щелевого фундамента на основе использования методов теории функций комплексного переменного.

    Полезная модель устройства для определения суммарных сил трения и сцепления, возникающих по контакту «боковая поверхность щелевого фундамента – грунт» при бетонировании враспор без опалубки;

    Инженерный метод расчета несущей способности щелевого фундамента и компьютерная программа-калькулятор для определения несущей способности по его боковой поверхности.

    Инженерный метод расчета несущей способности двухщелевого фундамента и формализующая его компьютерная программа-кулькулятор.

    Результаты внедрения результатов диссертационной работы в практику строительства.

Результаты научных исследований внедрены:

При определении несущей способности основания монолитных фундаментов, выполненных враспор грунта на объекте: «Здание столовой по ул. Баррикадной, дом 11, в р.п. Красные Баррикады Икрянинского района Астраханской области» в ООО НПФ Инженерный центр «ЮГСТРОЙ».

При разработке проектов и строительстве подземной части зданий и сооружений, возводимых по технологии «стена в грунте», в частности: при проектировании административного комплекса «Бизнес-парк» в городе Перми, ограждения береговой зоны искусственного острова в акватории р. Камы (Пермский край).

В учебном процессе на кафедре «Гидротехнические и земляные сооружения» Волгоградского государственного архитектурно-строительного университета.

Публикации . Основные положения диссертации опубликованы в 8 научных статьях, их них две в ведущих рецензируемых научных изданиях и 1 патент РФ на полезную модель.

Структура и объем работы . Диссертационная работа состоит из введения, четырех глав, общих выводов, списка используемой литературы из 113 наименований и приложений. Общий объем работы - 164 страницы машинописного текста, в том числе 114 страниц основного текста, содержащего 145 иллюстрации и 14 таблиц.

Особенности технологии устройства, работы и расчета несущей способности щелевых фундаментов в связных грунтах

Обычно разработка котлованов и траншей под столбчатые и ленточные сборные фундаменты осуществляется экскаватором с последующей ручной зачисткой дна и боковых поверхностей. Поэтому у этих фундаментов расчетная полезная нагрузка предается на грунтовое основание только через их подошву. Сопротивление грунта обратной засыпки в расчете не учитывается.

Напротив, в грунтах естественного сложения, особенно маловлажных связных грунтах, весьма перспективным является применение монолитных щелевых фундаментов с развитой боковой рабочей поверхностью. При устройстве таких фундаментов отпадает необходимость осуществлять обратную засыпку траншей и котлованов, что позволяет обеспечить возникновение существенных по величине сил трения и сцепления между грунтовым массивом, что не возможно при устройстве обычных фундаментов в открытых котлованах.

Высокую эффективность применения показывают щелевые фундаменты, представляющие собой одну или систему параллельных узких щелей в грунте, заполненных в распор бетоном, которые объединены ростверком в общий фундамент для восприятия нагрузки от надземной части здания. Устройство щелей может быть осуществлено при помощи нарезки их буром или щелерезом, а в случае большой глубины щелевого фундамента, он может быть устроен методом «стена в грунте» .

Внешняя нагрузка передается на грунтовое основание по боковой поверхности щелевого фундамента, по подошве и по подошве плиты ростверка, если таковая имеется.

В случае объединения в единый фундамент двух или более щелевых, в работу включается и заключенный между стенами массив грунта, за счет чего нагрузка предается в плоскости на уровне нижних торцов стенок.

Несущая способность такого фундамента существенно зависит от расстояния между стенками. При этом заключенный между стенками грунт, сами стенки и ростверк в совокупности могут быть рассмотрены как бетонно-грунтовый фундамент на естественном основании, высота которого равна высоте стенок. Если какая-либо часть внешней нагрузки передается наружными стенками, то это обстоятельство приводит к увеличению ширины условного бетонно-грунтового фундамента, передающего нагрузки на грунты основания.

Особо следует остановиться на вопросе передачи нагрузки по боковой поверхности изолированного щелевого фундамента. В работе сказано, что щелевые фундаменты по несущей способности грунтов основания следует рассчитывать на основе выражения N Fdlyk, (1.1) где: Fd - несущая способность грунта основания; у =1,2, если несущая способность фундамента определяется по результатам полевых испытаний в соответствии с ГОСТ и у =1,4, если несущая способность определяется расчетом; N - расчетная нагрузка, передаваемая на фундамент, кН. Несущую способность щелевого фундамента (ЩФ) прямоугольного поперечного сечения, работающего на центральную осевую сжимающую нагрузку и опирающегося на сжимаемое основание, в случае, если его боковая поверхность пересекает несколько параллельных слоев грунта основания, допускается определять по формуле: где: ус=1 - коэффициент условий работы фундамента; усг - коэффициент условий работы фунта под подошвой фундамента, принимающий значения 1,0; 0,9; 0,4 при разработке траншеи ковшом «обратная лопата» насухо, при разработке траншеи плоским грерї рерньїм ковшом насухо или под глинистым раствором с удалением шлама со дна траншеи, и при разработке траншеи плоским фейферным ковшом под глинистым раствором без удаления шлама со дна траншеи соответственно; R - расчетное сопротивление фунта под подошвой фундамента, (кПа), принимаемое по таблице № 3.1 (стр. 63 ); А - площадь подошвы фундамента, (м); U - периметр фундамента, (м); yct -коэффициент условий работы фунта по боковой поверхности фундамента, принимающий значения 0,8; 0,7 и 0,6 при бетонировании траншеи насухо в суглинках, глинах и при бетонировании траншеи под защитой глинистого раствора для всех грунтов соответственно, либо уточняется опытным путем; /І - расчетное сопротивление г -го слоя фунта по боковой поверхности щелевого фундамента, (кПа), принимаемое по таблице № 3.2 (стр. 63 ), но не более бОкПа; h\ - толщина г -го слоя фунта, соприкасающегося с боковой поверхностью щелевого фундамента, (м).

Аналогичные формулы и таблицы приведены и в документах , разработанным в НИИОСП им. Н.М.Герсеванова. Сама формула (1.2) выглядит убедительно и ее использование вполне логично. Из этой формулы видно, что полезная нагрузка, передаваемая щелевым фундаментом на основание, делится на две части: первая часть передается через подошву фундамента, а вторая - через его боковую поверхность. В специальной и нормативной литературе приводятся данные о долевом распределении несущей способности щелевых фундаментов по их подошве и боковой поверхности.

Компьютерное моделирование процесса зарождения и развития областей пластических деформаций в основании под подошвой щелевого фундамента

Вернувшись к рассмотрению рис. 2.6, видим, что предлагаемый прием дает адекватные результаты: изолинии нормальных az и ах напряжений на некотором удалении от выреза становятся параллельными дневной поверхности грунтового массива; отношение численных значений этих напряжений в соответствующих точках, приблизительно, как это и должно быть, равно величине коэффициента бокового давления грунта {aJoz «, =0,75); изолинии касательных напряжений тгх имеют классическую форму «бабочки», их численные значения в точках, лежащих на оси симметрии расчетной схемы, равны нулю.

Компьютерное моделирование процесса зарождения и развития областей пластических деформаций в основании под подошвой щелевого фундамента

До начала проведения исследования рассмотрены многочисленные литературные источники, в частности, работы , и по приведенным в них данным установлено, что глубина заложения щелевых фундаментов может изменяться в интервале 2м h 43м, а наиболее характерными значениями отношения ширины щелевого фундамента к глубине его заложения являются 2Mz=0,03;0,13;0,27;0,4.

Согласно данным, приведенным в первой главе диссертационной работы, которые основаны на результатах анализа нормативной документации и литературных источников , прочностные характеристики связного грунта изменяются в следующих пределах: угол внутреннего трения р є кПа.

Учитывая эти обстоятельства, получилось, что величина приведенного давления связности, вычисляемого по формуле от - C(yhtg(p) \ изменяется в интервале ссв = .

Для того, чтобы отображающая функция (2.5) обеспечивала получение математической модели основания щелевого фундамента с широким спектром численного значения отношения ширины фундамента к глубине его заложения 2b/h, будем использовать численные значения коэффициентов отображающей функции (2.6), приведенные в таблице № 2.5.

Расчеты по определению величины расчетного сопротивления основания щелевого фундамента выполнены при помощи компьютерных программ ASV32 и «Устойчивость. (Напряженно-деформированное состояние)» , разработанных в Волгоградском государственном

Области пластических деформаций в основании щелевого фундамента при зарождении (а), развитии (б) и в момент достижения предельно допустимой нагрузки (смыкание ОПД) (в) архитектурно-строительном университете, для всех возможных сочетаний численных значений переменных расчетных параметров 2b/h, осв и ф. На рис. 2.10 в качестве примера приведены области пластических деформаций в основании щелевого фундамента при их зарождении, развитии и в момент достижения предельно допустимой нагрузки (смыкание ОПД).

На рис. 2.11 приведены, как наиболее наглядные, графические зависимости вида AZ=J, AZe .

Согласно принятым в главе I пределам изменения численных значений переменных расчетных параметров, для достижения, поставленной в диссертационной работе цели, необходимо выполнить 1024 вычислительные операции по определению размеров областей пластических деформаций в основании двухщелевого фундамента .

Результатом настоящей главы должен стать инженерный метод расчета несущей способности однородного основания двухщелевого фундамента, разработанный на основе результатов анализа его напряженного состояния и процесса образования и развития областей пластических деформаций в активной зоне фундамента.

Ниже на рис. 3.3 3.5 представлены картины изолиний безразмерных (в долях у/г) трех компонент напряжения az; ax и tzx в однородном основании двухщелевых фундаментов различной ширины (2/ =0,8/г; 0,4/?; 0), имеющих одинаковую глубину заложения, в момент смыкания областей пластических деформаций, то есть в момент достижения интенсивностью внешней равномерно распределенной нагрузки своего предельно допустимого значения (или в момент потери устойчивости основанием). Отметим, что в последнем случае при L=0 (см. рис.3.2) двухщелевой фундамент вырождается в однощелевой (или просто щелевой фундамент) двойной ширины.

Экспериментальное определение первой критической нагрузки для модели щелевого фундамента

Внешние размеры формы 30x30 см, а ее ширина 3,4см. Внутренние размеры соответственно 28x28 см и 2см. Форма выполнена из оргстекла толщиной 7мм, а ее элементы скреплены между собой 13 металлическими болтами. Вставки-штампы из органического стекла, представляющие собой 105 модели щелевых фундаментов, изготовлены высотой 15см, шириной 1,2см и толщиной 2см, т.е. последний размер равен толщине изготавливаемой модели. Модели формировались с переменной глубиной выреза, чтобы можно было имитировать щелевой фундамент с величиной отношения его ширины к глубине заложения 2Mz3=0,l; 0,15; 0,2; 0,25 и 0,3.

Часть вставки-штампа, расположенная выше поверхности модели, служит для опирання динамометра ДОСМ-3-1, измеряющего величину передаваемого на модель основания усилия, создаваемого вертикально расположенным винтом.

Вся вставка-штамп перед проведением опыта тщательно смазывалась техническим вазелином для исключения влияния сил трения.

Суть эксперимента заключалась в следующем.

Из желатино-геля ХС с весовой концентрацией желатина равной 15%, 30% и 45% последовательно изготавливались четыре партии по пять моделей оснований щелевого фундамента (рис. 4.2а), с величиной отношения ширины 2&/A3=0,l;0,15; 0,2; и 0,3.

Затем эти модели нагружались через вставку-штамп вертикальной равномерно распределенной нагрузкой до того момента, пока у нижних краев вставки-штампа не начинали отчетливо проглядываться крошечные трещинки - признак начала разрушения (рис. 4.4). Соответствующие значения нагрузки фиксировалась, и принимались за величину, при которой начинают образовываться области предельного состояния в материале модели щелевого фундамента, т.е. за величину первой критической нагрузки.

Среднее арифметическое из пяти (для каждой партии моделей с одинаковым значением 2b/h3) значение q3 принималось в качестве результата эксперимента для данной партии. Таких экспериментальных значений получено пять; они представлены в таблице № 4.2.

В той же таблице приведены значения соответствующих нагрузок, полученные на основании расчета, выполненного при помощи компьютерной программы «Устойчивость. Напряженно-деформированное состояние», разработанной в ВолгГАСУ . Отметим, что все расчеты проведены при величине коэффициента бокового давления фунта,=0,75, что является средним значением для глинистых грунтов .

Графическая интерпретация экспериментальных и теоретических данных в виде зависимостей типа q3=f и метода конечных элементов .

Сравнивая области пластических деформаций, построенных на основании результатов расчетов (рис. 4.6) для момента их зарождения, и ОПД для данного рассматриваемого случая, приведенные на рис. 4.6в, видим их практическую идентичность. опд- Рис. 4.6. Области пластических деформаций в основании модели щелевого фундамента, построенные по напряжениям, вычисленным при помощи МТФКП (а;б) и при помощи метода конечных элементов (в)

Следовательно, можно утверждать, что полученные экспериментальные данные с достаточной для инженерной практики степенью точности совпадают с данными, полученными расчетом. Это дает основание полагать, что разработанный в ВолгГАСУ инженерный метод расчета несущей способности щелевого фундамента может быть рекомендован для практического использования.

1. Несущая способность щелевого фундамента по грунту определяется суммой несущей способности по боковой поверхности и его подошве. Первое слагаемое определяются физико-механическими свойствами вмещающего массива грунта, гидро-геологическими условиями строительной площадки, геометрическими размерами фундамента, физико химическими свойствами бетона, степенью проникновения коллоидного водоцементного раствора в поверхностные слои грунта откосов котлована (траншеи), технологией сооружения фундамента и так далее. Второе слагаемое зависит от формы и размера подошвы и ФМСГ. Поэтому определять несущую способность по подошве фундамента можно на основе анализа НДС грунтового массива при помощи МКЭ и МТФКП, а несущую способность по боковой поверхности - путем экспериментальных исследований непосредственно на строительной площадке.

2. На основе методов теории функций комплексного переменного получены графические зависимости и соответствующие аналитические аппроксимации, позволяющие определять несущую способность по подошве щелевого фундамента для всех возможных сочетаний численных значений переменных расчетных параметров, использованных в диссертационной работе. Эти результаты составили базу данных компьютерной программы-калькулятора, позволяющей автоматизировать процесс вычисления части несущей способности, приходящейся на подошву фундамента.

3. Разработано и запатентовано устройство, позволяющее в реальных инженерно-геологических условиях конкретной строительной площадки определять максимальные значения удельных сил трения и сцепления, действующих по боковой поверхности монолитных фундаментов, изготавливаемых без опалубки враспор грунта.

Чтобы рассчитать осадку фундамента и проверить прочность (несущую способность) основания, нужно знать распределение напряжений в основании, т. е. его напряженное состояние. Необходимо иметь сведения о распределении напряжений не только по подошве фундамента, но и ниже нее, так как осадка фундамента является следствием деформации толщи грунта, расположенной под ним. Для расчета несущей способности основания также приходится определять напряжения в грунте ниже подошвы фундамента. Без этого нельзя установить наличие и размеры областей сдвигов, проверить прочность прослойки слабого грунта и т. д.

Для теоретического определения напряжений в основании используют, как правило, решения теории упругости, полученные для линейно деформируемого однородного тела. В действительности грунт не является ни линейно деформируемым, телом, так как деформации его не прямо пропорциональны давлению, ни однородным телом, так как плотность его меняется с глубиной. Однако эти два обстоятельства не сказываются существенно на распределении напряжений в основании.

В данной главе рассматриваются не все вопросы напряженного состояния оснований, а только методика определения нормальных напряжений, действующих в грунте по горизонтальным площадкам.

§ 12. Распределение напряжений по подошве фундамента

В мостовом и гидротехническом строительстве, как правило, применяют жесткие фундаменты, деформациями которых можно пренебречь, поскольку они малы по сравнению с перемещениями, связанными с осадкой.

Измерения нормальных напряжений (давлений) по подошве фундамента, выполненные с помощью специальных приборов, вмонтированных на уровне подошвы, показали, что эти напряжения распределены по криволинейному закону, зависящему от формы и размеров фундамента в плане, свойств грунта, среднего давления на основание и других факторов.


Рис. 2.1. Фактическая и теоретическая эпюры нормальных напряжений по подошве фундамента

В качестве примера на рис. 2.1 сплошной линией показано фактическое распределение нормальных напряжений (эпюра нормальных напряжений) по подошве фундамента, когда нагрузка (сила N) значительно меньше несущей способности основания, а пунктиром - распределение напряжений, полученное на основе решений теории упругости.

В настоящее время, несмотря на накопленный экспериментальный материал и теоретические исследования, не представляется возможным устанавливать в каждом конкретном случае действительное распределение давлений по подошве фундамента. В связи с этим в практических расчетах исходят из прямолинейных эпюр давлений.


Рис. 2.2. Прямолинейные эпюры нормальных напряжений по подошве фундамента а - при центральном сжатии; б- при внецентренном сжатии и e W/A

При центральном сжатии (рис. 2.2, а) напряжения Pm, кПа, по подошве принимают равномерно распределенными и равными:
Pm = N/A, (2.1)
где N - нормальная сила в сечении по подошве фундамента, кН; А - площадь подошвы фундамента, м 2 .

При внецентренном сжатии эпюру напряжений принимают в виде трапеции (рис. 2.2, б) или треугольника (рис. 2.2, в). В первом из этих случаев наибольшее ртах и наименьшее Pmin напряжения определяются выражениями:
Pmax = N/A + M/W;
Pmin = N/A - M/W (2.2)
где M - Ne - изгибающий момент в сечении по подошве фундамента, кН·м (здесь е - эксцентриситет приложения силы N, м); W - момент сопротивления площади подошвы фундамента, м 3 .

Формулы (2.2) справедливы в случаях, когда изгибающий момент действует в вертикальной плоскости, проходящей через главную центральную ось инерции подошвы фундамента.

При подошве фундамента в виде прямоугольника с размером, перпендикулярным плоскости действия момента М, b и другим размером a имеем A = ab и W = ba2/6. Подставляя выражения A и W в формулы (2.2) и учитывая, что M = Ne, получаем:
Pmax =N/ba(1+6e/a)
Pmin=N/ba(1-6e/a) (2.3)
Напряжение Pmin, кПа, вычисленное по формуле (2.2) или (2.3) при эксцентриситете e> W/A, получается отрицательным (растягивающим). Между тем в сечении по подошве фундамента таких напряжений практически быть не может. При е> W/A край подошвы фундамента, более удаленный от силы N, поднимается под действием этой силы над грунтом. На некотором участке подошвы фундамента (со стороны этого края) контакт между фундаментом и грунтом нарушается (происходит так называемое отлипание фундамента от грунта), а потому эпюра напряжений P имеет вид треугольника (см. рис. 2.2, в). Этого обстоятельства формулы (2.2) и (2.3) не учитывают, поэтому ими нельзя пользоваться при е> W/A.

Формулы для определения размера а 1 , м, части подошвы, по которой сохраняется контакт фундамента с грунтом, и наибольшего напряжения Pmax, кПа (см. рис. 2.2, в), можно получить, если учесть, что напряжения P должны уравновесить силу N, кН, действующую на расстоянии с от ближайшего к этой силе края подошвы фундамента.
Отсюда вытекают два условия: 1) центр тяжести эпюры напряжений P расположен на линии действия силы N; 2) объем эпюры равен величине этой силы. Из первого условия при прямоугольной подошве фундамента следует
А1=3с, (2.4)
а из второго
(Pmax а 1 /2)b = N. (2.5)
Из формул (2.4) и (2.5) получаем
Pmax =2N/(3cb). (2.6)
Итак, при эксцентриситете е> W/A = a/6 наибольшее давление по прямоугольной подошве фундамента Pmax следует определять по формуле (2.6).

Что еще почитать