Виды экранирования. Принципы действия экранов

Защита информации от утечки через ПЭМИН осуществляется с применением пассивных и активных методов и средств.

Пассивные методы защиты информации направлены на:

  • ослабление побочных электромагнитных излучений (информационных сигналов) ОТСС на границе контролируемой зоны до величин, обеспечивающих невозможность их выделения средством разведки на фоне естественных шумов;
  • ослабление наводок побочных электромагнитных излучений в посторонних проводниках и соединительных линиях, выходящих за пределы контролируемой зоны, до величин, обеспечивающих невозможность их выделения средством разведки на фоне естественных шумов;
  • исключение или ослабление просачивания информационных сигналов в цепи электропитания, выходящие за пределы контролируемой зоны, до величин, обеспечивающих невозможность их выделения средством разведки на фоне естественных шумов.

Активные методы защиты информации направлены на:

  • создание маскирующих пространственных электромагнитных помех с целью уменьшения отношения сигнал/шум на границе контролируемой зоны до величин, обеспечивающих невозможность выделения средством разведки информационного сигнала;
  • создание маскирующих электромагнитных помех в посторонних проводниках и соединительных линиях с целью уменьшения отношения сигнал/шум на границе контролируемой зоны до величин, обеспечивающих невозможность выделения средством разведки информационного сигнала.

Рассмотрим более подробно наиболее распространенные методы пассивной и активной защиты от ПЭМИН.

Экранирование технических средств

Как известно из предыдущих лекций, при функционировании технических средств обработки, приема, хранения и передачи информации (ТСПИ) создаются побочные токи и поля, которые могут быть использованы злоумышленником для съема информации. Подводя итог, можно сделать вывод, что между двумя токопроводящими элементами могут возникнуть следующие виды связи:

  • через электрическое поле;
  • через магнитное поле;
  • через электромагнитное поле;
  • через соединительные провода.

Основной характеристикой поля является его напряженность. Для электрического и магнитного полей в свободном пространстве она обратно пропорциональна квадрату расстояния от источника сигнала. Напряженность электромагнитного поля обратно пропорциональна первой степени расстояния. Напряжение на конце проводной или волновой линии с расстоянием падает медленно. Следовательно, на малом расстоянии от источника сигнала имеют место все четыре вида связи. По мере увеличения расстояния сначала исчезают электрическое и магнитное поля, затем - электромагнитное поле и на очень большом расстоянии влияет только связь по проводам и волноводам.

Одним из наиболее эффективных пассивных методов защиты от ПЭМИ является экранирование . Экранирование - локализация электромагнитной энергии в определенном пространстве за счет ограничения распространения ее всеми возможными способами.

Различают три вида экранирования :

  • электростатическое;
  • магнитостатическое;
  • электромагнитное.

Электростатическое экранирование заключается в замыкании электростатического поля на поверхность металлического экрана и отводе электрических зарядов на землю (на корпус прибора) с помощью контура заземления. Последний должен иметь сопротивление не больше 4 Ом. Применение металлических экранов весьма эффективно и позволяет полностью устранить влияние электростатического поля. При правильном использовании диэлектрических экранов, плотно прилегающих к экранируемому элементу, можно ослабить поле источника сигнала в ε раз, где ε - относительная диэлектрическая проницаемость материала экрана.

Эффективность применения экрана во многом зависит от качества соединения корпуса ТСПИ с экраном. Здесь особое значение имеет отсутствие соединительных проводов между частями экрана и корпусом ТСПИ.

Основные требования, которые предъявляются к электрическим экранам, можно сформулировать следующим образом :

  • конструкция экрана должна выбираться такой, чтобы силовые линии электрического поля замыкались на стенки экрана, не выходя за его пределы;
  • в области низких частот (при глубине проникновения (δ) больше толщины (d), т.е. при δ > d) эффективность электростатического экранирования практически определяется качеством электрического контакта металлического экрана с корпусом устройства и мало зависит от материала экрана и его толщины;
  • в области высоких частот (при d < δ) эффективность экрана, работающего в электромагнитном режиме, определяется его толщиной, проводимостью и магнитной проницаемостью.

При экранировании магнитных полей различают низкочастотные магнитные поля и высокочастотные. используется для наводок низкой частоты в диапазоне от 0 до 3…10 кГц. Низкочастотные магнитные поля шунтируются экраном за счет направленности силовых линий вдоль стенок экрана.

Рассмотрим более подробно принцип магнитостатического экранирования .

Вокруг элемента (пусть это будет виток) с постоянным током существует магнитное поле напряженностью H 0 , которое необходимо экранировать. Для этого окружим виток замкнутым экраном, магнитная проницаемость µ которого больше единицы. Экран намагнитится, в результате чего создастся вторичное поле, которое ослабит первичное поле вне экрана. То есть силовые линии поля витка, встречая экран, обладающий меньшим магнитным сопротивлением, чем воздух, стремятся пройти по стенкам экрана и в меньшем количестве доходят до пространства вне экрана. Такой экран одинаково пригоден для защиты от воздействия магнитного поля и для защиты внешнего пространства от влияния магнитного поля созданного источником внутри экрана (Рисунок 16.1) .


Рис. 16.1.

Основные требования, предъявляемые к магнитостатическим экранам, можно свести к следующим :

  • магнитная проницаемость µ материала экрана должна быть возможно более высокой. Для изготовления экранов желательно применять магнитомягкие материалы с высокой магнитной проницаемостью (например, пермаллой);
  • увеличение толщины стенок экрана приводит к повышению эффективности экранирования , однако при этом следует принимать во внимание возможные конструктивные ограничения по массе и габаритам экрана;
  • стыки, разрезы и швы в экране должны размещаться параллельно линиям магнитной индукции магнитного поля. Их число должно быть минимальным;
  • заземление экрана не влияет на эффективность магнитостатического экранирования .

Эффективность магнитостатического экранирования повышается при применении многослойных экранов.

Электромагнитное экранирование применяется на высоких частотах. Действие такого экрана основано на том, что высокочастотное электромагнитное поле ослабляется им же созданными вихревыми токами обратного напряжения. Этот способ экранирования может ослаблять как магнитные, так и электрические поля, поэтому называется электромагнитным.

Упрощенная физическая сущность электромагнитного экранирования сводится к тому, что под действием источника электромагнитной энергии на стороне экрана, обращенной к источнику, возникают заряды, а в его стенках – токи, поля которых во внешнем пространстве противоположны полям источника и примерно равны ему по интенсивности. Два поля компенсируют друг друга.

С точки зрения волновых представлений эффект экранирования проявляется из-за многократного отражения электромагнитных волн от поверхности экрана и затухания энергии волн в его металлической толще. Отражение электромагнитной энергии обусловлено несоответствием волновых характеристик диэлектрика, в котором расположен экран и материала экрана. Чем больше это несоответствие, чем больше отличаются волновые сопротивления экрана и диэлектрика, тем интенсивнее частичный эффект экранирования определяемый отражением электромагнитных волн .

Выбор материала для экрана зависит от многих условий. Металлические материалы выбирают по следующим критериям и условиям:

  • необходимость достижения определенной величины ослабления электромагнитного поля при наличии ограничения размеров экрана и его влияния на объект защиты;
  • устойчивость и прочность металла как материала.

Среди наиболее распространенных металлов для изготовления экранов можно назвать сталь, медь, алюминий, латунь. Популярность этих материалов в первую очередь обусловлена достаточно высокой эффективностью экранирования . Сталь популярна также вследствие возможности использования сварки при монтаже экрана.

К недостаткам листовых металлических экранов можно отнести высокую стоимость, большой вес, крупные габариты и сложность монтажа. Этих недостатков лишены металлические сетки . Они легче, проще в изготовлении и размещении, дешевле. Основными параметрами сетки является ее шаг, равный расстоянию между соседними центрами проволоки, радиус проволоки и удельная проводимость материала сетки. К недостаткам металлических сеток относят, прежде всего, высокий износ по сравнению с листовыми экранами.

Для экранирования также применяются фольговые материалы . К ним относятся электрически тонкие материалы толщиной 0,01…0,05 мм. Фольговые материалы в основном производятся из диамагнитных материалов – алюминий, латунь, цинк.

Перспективным направлением в области экранирования является применение токопроводящих красок , так как они дешевые, не требуют работ по монтажу, просты в применении. Токопроводящие краски создаются на основе диэлектрического пленкообразующего материала с добавлением в него проводящих составляющих, пластификатора и отвердителя. В качестве токопроводящих пигментов используют коллоидное серебро, графит, сажу, оксиды металлов, порошковую медь, алюминий.

Токопроводящие краски лишены недостатков листовых экранов и механических решеток, так как достаточно устойчивы в условиях резких климатических изменений и просты в эксплуатации.

Следует отметить, что экранироваться могут не только отдельные ТСПИ, но и помещения в целом. В неэкранированных помещениях функции экрана частично выполняют железобетонные составляющие в стенах. В окнах и дверях их нет, поэтому они более уязвимы.

При экранировании помещений используются: листовая сталь толщиной до 2 мм, стальная (медная, латунная) сетка с ячейкой до 2,5 мм. В защищенных помещениях экранируются двери и окна. Окна экранируются сеткой, металлизированными шторами, металлизацией стекол и оклеиванием их токопроводящими пленками. Двери выполняются из стали или покрываются токопроводящими материалами (стальной лист, металлическая сетка). Особое внимание обращается на наличие электрического контакта токопроводящих слоев двери и стен по всему периметру дверного проема. При экранировании полей недопустимо наличие зазоров, щелей в экране. Размер ячейки сетки должен быть не более 0,1 длины волны излучения.

В защищенной ПЭВМ, например, экранируются блоки управления электронно-лучевой трубкой, корпус выполняется из стали или металлизируется изнутри, экран монитора покрывается токопроводящей заземленной пленкой и (или) защищается металлической сеткой.

Следует отметить, что помимо функции защиты от утечки информации через ПЭМИН, экранирование может снизить вредное воздействие электромагнитного излучения на людей и уровень шумов при работе ТСПИ.

Защитное экранирование предназначено для ослабления электрических, магнитных и электромагнитных полей. Защитные экраны позволяют значительно уменьшить проникновение или полностью исключить воздействие электромагнитных полей на конструктивные элементы оборудования, электронную аппаратуру, измерительные приборы, кабели, помещения и здания энергетических объектов. Также, благодаря эффективному экранированию электрических и электронных технических средств можно подавить любые электромагнитные помехи, исходящие из них в сеть или в окружающее пространство.

Принцип действия защитных экранов

По классической схеме защитный экран размещается между источником помехи и объектом, предназначенным для экранирования.

Благодаря экранированию снижаются значения напряженности электромагнитного поля: от Е0 и Н0 непосредственно перед экраном до E1 и H1 за ним (См. Рис.1). Физическая сущность защитного экранирования объясняется созданием на поверхности экрана заряда или индуцированного тока, которые являются источниками полей, противодействующих существующим электромагнитным полям. Это равнозначно увеличению пути между приёмником и источником возникающей помехи. Эффективность защитного экранирования зависти от ряда факторов:

  • Частота поля.
  • Электропроводимость материала, из которого изготовлен экран.
  • Магнитная проницаемость материала защитного экрана.
  • Месторасположение и размеры экрана.

В дальнейшем при проведении расчётов будем исходить из положения, что экранирование осуществляется за счёт следующих факторов:

  • Поглощение материалом экрана энергии электрического и магнитного поля (коэффициент затухания aSА).
  • Отражение падающей электромагнитной волны материалом экрана (aSR - коэффициент затухания).

Рис. 1. Защита от воздействия электрических и магнитных полей экранированием токовых контуров, расположенных вне контура:

а – принципиальная схема расположения токовых контуров и защитного экрана S;
б – условная граница между условиями для ближнего и дальнего поля.

Результатирующий коэффициент затухания (дБ) можно вычислить по формулам:

Общий коэффициент затухания состоит из двух компонентов :

В вышеприведённых расчётах не учитываются многочисленные отражения от экрана и стен помещения. Для определения существенных взаимосвязей между расчётными коэффициентами затухания, свойствами магнитного поля, геометрическими размерами и характеристиками материала экрана следует использовать полное сопротивление. В зависимости от расстояния Х между приёмником помехи и её источником (Рис. 1 а) и частоты f в каждой из областей (Рис. 1 б), для нахождения коэффициентов затухания aSА иaSR можно применять следующие выражения:

для электрического поля в ближней зоне

коэффициент поглощения для каждой зоны равен

где и – относительная магнитная проницаемость материала и его электропроводность, тождественная коэффициенту электропроводности меди (= 5,8 107 См/м);
fб = 1 Гц – базовая частота;
d – толщина защитного экрана, отнесенная к d6 = 1 мм; хб = 1 м.

Выражения, находящиеся в квадратных скобках формул (1.4) ...(1.7), связывают между собой свойства материала и толщину экрана с коэффициентом затухания. При f = 1 Гц ординаты функций (1.4) ...(1.7) можно определить по выражениям для нахождения аSR и аSA. Зависимость между общим коэффициентом aS и частотой, при воздействии магнитного поля в ближней зоне, продемонстрирована на Рис.2. Данную зависимость можно найти при помощи суммирования значений aSR и aSА в соответствии с формулой (1.3). Зависимости aSА, aSR и aS от частоты для дальней зоны и для ближней зоны, определяемые по выражениям (1.6) и (1.7), представлены на Рис. 3. Необходимо отметить, что снижение коэффициента aSR для ближней зоны составляет 30 дБ (при увеличении частоты в 10 раз).

Ориентировочная эффективность защитных экранов может оцениваться в следующем порядке:

  • Если aS < 10 дБ – экранирование недостаточно эффективно.
  • Если 10 < aS < 30 дБ – обеспечиваются минимальные требования по экранированию.
  • Если 30 < aS < 60 дБ – требования по экранированию обеспечены для большинства случаев.
  • Если 60 < aS < 90 дБ – хороший уровень экранирования.
  • Если 90 Следует помнить, что эффективность экранирования энергообъектов связана с состоянием стенки экрана.

Наличие различных дефектов (трещины, раковины, неоднородности и пр.) или технологических отверстий (проёмы для ввода кабелей и проводов, отверстия для вентиляции и обслуживания) снижает защитные свойства экрана. Кроме того, внутри экранированных устройств и помещений могут возникать резонансные эффекты (практически любой корпус прибора с токопроводящими стенками в первом приближении можно рассматривать в качестве объёмного резонатора).

Рис. 2. Принципиальная схема, отражающая зависимости коэффициентов (1), (2) и (3) от частоты магнитного поля (f) в пределах ближней зоны

Рис. 3. Принципиальная схема, отражающая зависимости между коэффициентами затухания и частотой электромагнитного поля в пределах дальней зоны и для электрического поля в пределах ближней зоны:

Материалы для изготовления защитных экранов

Для качественного экранирования применяются ферромагнитные (сплавы железа) и немагнитные металлы (медь). Защитные экраны, изготовленные на основе ферромагнитных материалов , по эффективности ослабления электрического поля при низких частотах уступают экранам из немагнитных металлов, однако позволяют уменьшать постоянные магнитные поля. При увеличении частоты воздействующего поля показатели демпфирования в отношении электрических и магнитных полей улучшаются [см. (1.7) и Рис. 2 и 3].

Например, обычные здания и другие крупные строительные сооружения даже без применения специальной защиты уменьшают внешние поля на 6 ...10 дБ, а железобетонные конструкции с приваренной стальной арматурой обеспечивают снижение воздействия внешних электромагнитных полей до 25 ...30 дБ. Немагнитные материалы создают экранирующий эффект за счет магнитных полей, образуемых вихревыми токами. Постоянное магнитное поле практически не экранируется, а низкочастотное переменное поле ослабляется в незначительной степени [см. (1.4) и Рис. 2.]. Между тем подобные экраны отлично демпфируют электрические поля [см. (1.5), (1.6) и Рис. 3].

В настоящее время применяются различные материалы и устройства для экранирования, поставляемые в виде пластин, лент, оплёток и в других формах :

  • Стальные и медные пластины для изготовления экранированных корпусов, для покрытия потолков и стен помещений. Крепятся болтами или привариваются к конструктивным строительным элементам.
  • Тонкая металлическая фольга из мягкомагнитных сплавов, обладающих повышенной магнитной проницаемостью. Испорльзуется для изготовления опытных образцов и серийной аппаратуры.
  • Экранирование кабелей металлической лентой и металлической оплёткой.
  • Плетёные металлические шланги для эффективного экранирования кабельных жгутов и кабелей.
  • Сотовые металлические структуры для создания экранирующих элементов с высоким пропусканием воздушных потоков.
  • Сетки из тонкой проволоки, прозрачная проводящая фольга и стёкла с металлическим напылением для комплексного высокочастотного экранирования окон.
  • Тонкослойные серебряные, медные и никелевые покрытия, наносимые на корпусные детали из пластика и пластмасс.
  • Пластмассовые материалы с включением проводящих элементов (нити из углерода) или добавок (металлические порошки), предназначенные для производства экранированных корпусов.
  • Материалы для высокочастотной экранирующей спецодежды, содержащие вплетенные волокна из нержавеющих сталей (в частотном диапазоне 100 кГц... 40 ГГЦ коэффициент затухания может доходить до 30 дБ).

Чтобы обеспечить высокие экранирующие свойства корпусов оборудования и технологических помещений выполняется уплотнение стыков, проёмов, щелей и других мест, через которые может пройти высокочастотное излучение. Качественные уплотнения гарантируют непрерывность вихревых токов от электромагнитных полей. Для изготовления уплотняющих элементов применяются высокотехнологичные материалы, которые обладают такими свойствами, как:

  • Отличная проводимость.
  • Хорошая формуемость.
  • Устойчивость к воздействию магнитных и электрических полей.
  • Низкое контактное сопротивление с металлическими частями конструкций.

Чаще всего используются следующие виды уплотняющих изделий:

  • Электропроводимые эластомеры на основе силанового каучука, поставляемые в виде пластин, трубок и кольцевых шнуров. В качестве материала для наполнителей применяется технический углерод, никелевый или серебряный порошок, посеребренная алюминиевая мелкодисперсная пудра.
  • Металлические плетёные прокладки круглой и прямоугольной формы.
  • Пластины на основе силиконового каучука, внутри которых находятся металлические нити с перпендикулярным расположением к поверхности.
  • Проволочные оплётки, армированные эластомером.
  • Токопроводящие технологические добавки, изготовленные из переработанной пластмассы и клея.
  • Уплотнительные пружинящие устройства (бериллиевая бронза) для надёжного уплотнения дверей и входных групп.

Экранирование приборов, аппаратуры и помещений

Микропроцессорная аппаратура и электронные приборы размещаются как правило в металлических корпусах, которые являются своеобразным экраном от внешних электромагнитных полей. В то же время корпуса имеют окна, прорези, отверстия, которые снижают экранирующий эффект. Для соблюдения требований электромагнитной совместимости необходимо устранить указанные неоднородности. Для этих целей променяют гальваническое соединение всех стенок шкафов с применением уплотнений в виде металлических прокладок.

По всей длине соединений обеспечивается равномерная сила прижатия стенок. Для лучшего теплоотвода в шкафах предусмотрены отверстия и прорези в стенках. Электрические соединения с другими техническими устройствами и приборами выполняются только с помощью разъёмов. При правильном экранировании коэффициент затухания должен находиться в пределах 40-100 дБ. В приборах, где корпуса выполняются из пластиковых материалов, например, персональные компьютера, мониторы, контрольно-измерительные приборы, экранирование обеспечивается металлизацией поверхности частей корпуса или вкраплением металлических нитей материал корпуса.

При проведении испытаний приборов и электронных средств, при реализации надежной передачи данных по каналам связи или их хранения, во всех этих случаях требуется надежное экранирование помещений и зданий. Для следующих случаев необходимы мероприятия по комплексному экранированию помещений:

  • проверка технических средств устройств для автоматизации, измерений и связи, оборудования с высоким рабочим напряжением,
  • научные исследования для метрологических служб.
  • реализация центров обработки данных.
  • диагностическое оборудование в медицинских учреждениях.

При выполнении экранирования в ценрах обработки данных обеспечивается вместе с защитой от воздействия электромагнитных помех вычислительной техники, защита от утечек секретной информации, а также от промышленного шпионажа.
Комплексное экранирование помещений заключается в создании вокруг аппаратуры проводящей оболочки, эффективно отражающей электромагнитные поля. На современном этапе развития средства экранирования имеют модульную структуру.

Для создания полноценной защиты предназначены следующие элементы :

  • Стеновые и потолковые модули (стальная или медная фольга, стальные листы).
  • Электронные фильтры, предназначенные для предотвращения передачи в сети электромагнитных помех.
  • Остекление из специальных светопрозрачных материалов с хорошими сглаживающими свойствами.
  • Уплотнение дверей, окон проемов специализированным высокочастотным материалом.

Применяя комплексный подход к экранированию помещений можно достич хороших показателей затухания электромагнитных помех с коэффициентом от 80 до 100 дБ.

Для уменьшения воздействий высокочастотных помех на кабели и провода, для снижения электромагнитных излучений от кабелей и проводов, а также для обеспечения развязки проводов с высокой чувствительностью к помехам и содержащих помехи (при близком расположении) используются экраны для кабелей.

Экраны для кабелей

Для изготовления кабельных экранов используются конструкционные материалы с высокими проводящими свойствами (металлические оплётки из медных и алюминиевых сплавов), позволяющие существенно снизить напряжения

Однако главная роль отводится заземлению экрана. При одностороннем заземлении экрана, благодаря байпасному эффекту уменьшается поперечное напряжение, связанное с воздействием поля Е.

При 2-х стороннем заземлении экрана (Рис.4в) образуется замкнутый контур; при изменении магнитного поля Н индуктируется ток I. При этом происходит уменьшение продольного напряжения

где Zk – полное сопротивление связи для экранированного кабеля.

Если для затухания недостаточно одного защитного экрана, используют два экрана, совмещённые друг с другом и полностью изолированные между собой. Однако снова возникает проблема, каким образом обеспечить заземление внутреннего экрана.

При 2-х стороннем заземлении (Рис. 4г) продольное напряжение рассчитывает по формуле:

Волосы - это богатство девушки дарованное ей природой. К сожалению, существует множество факторов, которые крайне негативно влияют на их внешний вид и структуру.

Уберечь себя от этого поможет новая процедура в косметологии - экранирование. Она способна защищать волосы от ветра, солнца и холода. Набор натуральных компонентов, которые входят в состав препарата, питают волосы до самых корней.

Экранирование волос является одной из самых популярных и эффективных процедур нынешнего времени. Главная задача её заключается в том, чтобы достичь полного восстановления локонов. Для получения визуального эффекта достаточно провести один сеанс.

Лечение осуществляется с помощью витаминизированного препарата, который способен проникать вглубь луковицы.

Особенность такой процедуры заключается в том, что микроэлементы восстанавливают структуру волоса изнутри, а также образовывают защитную поверхностную пленочку. С помощью этого волосы меньше поддаются воздействию внешних факторов.

Средство для экранирования состоит:

  • белков;
  • аминокислот;
  • жиров.

Срок действия процедуры, сколько она может держаться, напрямую зависит от типа, структуры и степени поврежденности волос. В среднем, этот показатель может быть в пределах от одной до двух недель.

Особенность проведения процедуры заключается в том, что экранирование имеет накопительные свойства. Чем чаще проводится процедура, тем больше времени она будет защищать волосы. Но не стоит и злоупотреблять ею. В среднем наносить средство нужно раз в две или три недели. Если делать чаще, то локоны могут отяжелеть, а на поверхности появится эффект жирных волос.

Основные виды процедуры:

  • цветное;
  • бесцветное.

Эти два вида практически одинаковы, единым отличием является то, что в цветном имеются красящие компоненты. Они безвредны, но не стойкие. Такая краска достаточно быстро вымывается с волос.

Разница между ламинированием и экранированием

Довольно часто в салонах красоты для того, чтобы оживить, волосы предлагают проведение процедуры ламинирования или экранирования. Много кто скажет, что это одно и то же. На самом деле услуги между собой разнятся.

Средство, которое используется для ламинирования, действует исключительно на поверхность волос. Оно обволакивает оболочку кудрей в воздухонепроницаемую плёнку, а экранирование излечивает их из середины. Эти две процедуры «хорошо относятся» друг к другу, поэтому их можно делать как по отдельности, так и вместе.

Для того, чтобы результат от процедуры радовал длительное время, необходимо для мытья головы использовать шампунь, в котором не предусмотрен вышелушивающий эффект, а также проследите, чтобы в состав не входил спирт.

Преимущества и недостатки процедуры: плюсы и минусы

Не каждая процедура по восстановлению структуры волос способна показать мгновенный результат. К экранированию это не относится. После первой процедуры волосы становятся ровными и здоровыми.

Основные преимущества и плюсы:

  • Тонкие волосы приобретают объем. Они перестают пушиться и расчёсываются без лишних проблем.
  • Средство полностью восстанавливает сухие, ломкие и безжизненные волосы . Все это происходит благодаря микроэлементам, которые входят в состав препарата.
  • Бесцветное экранирование придаёт кудрям натуральный оттенок и блеск. Они становятся ухоженными и живыми.
  • Цветное экранирование проводится препаратом, который не содержит в себе аммиак.
  • В результате проведения процедуры кудри становятся послушными и не требуют укладки даже после мытья головы и высушивания феном.
  • Оберегает луковицу волос от воздействия на них внешней среды.

Как и другие препараты, экранирование имеет свои недостатки и минусы, а именно:

  • обладает малым накопительным эффектом;
  • первой процедуры экранирования хватает до первого мытья головы, но даже после неё волосы выглядят намного здоровее.

Для полного восстановления необходимо провести от пяти до десяти сеансов.

Противопоказания и вред

  • Не рекомендуется применять данную процедуру восстановления тем, у кого волосы склонны к повышенной жирности. Для получения более точного результата, лучше всего проконсультироваться с мастером.
  • Процедуру можно делать только после двух недель проведения химической завивки.
  • Запрещается использовать препарат тем, кто страдает кожными заболеваниями, чтобы избежать вреда.
  • В случае если имеется индивидуальная непереносимость компонентов.

Стоит на время отложить процедуру тем девушкам, которые имеют раны на коже головы, до полного их заживления.

Правильный уход после процедуры

Для того чтобы волосы длительное время сохраняли свой первоначальный вид, необходимо за ними осуществлять правильный уход:

  • Средства для мытья головы должны иметь минимальное количество щелочи.
  • Несколько раз в неделю следует питать локоны масками из натуральных компонентов: из желатина или приготовленные на растительном масле.

А также не стоит мыть голову на протяжении двух дней после проведения процедуры. Кроме этого, после каждого мытья нужно обязательно использовать бальзамы, изготовленные из натуральных компонентов.

Что касается окрашивания, то после шайнинга надо с ним повременить, так как химические вещества, которые входят в состав краски, способны вступать в реакцию с применяемым средством.

Этапы проведения экранирования в салоне и в домашних условиях

Этот вид процедуры можно проводить как в салоне, так и домашних условиях. Главное, во время работы соблюдать все правила.

Этапы проведения в салоне:

  • Проводится тщательное мытье головы с использованием шампуня. После этого необходимо подождать некоторое время, чтобы волосы высохли природным путём, главное, не применять фен.
  • Поэтапно на локоны наносится три вида вещества. В таком состоянии необходимо побыть до полного впитывания средства.
  • После того как волосы полностью поглотят жидкость, голову смывают тёплой, проточной водой без использования мылящих средств.
  • После полного высыхания наносится второй вид препарата, который имеет цветной эффект. Затем нужно подождать 30 минут, чтобы средство впиталось.
  • По окончании отведённого времени голову потребуется высушить потоком тёплого воздуха. Для этого применяется климазон, мушуар и в редких случаях фен. Главное задание этого этапа заключается в том, чтобы локоны сохли равномерно. Эффективный результат можно достичь, если использовать два первых аппарата.
  • Окончание процедуры осуществляется нанесением специальной жидкости, которая должна высохнуть.

Проводить повторную обработку волос нужно по рекомендации парикмахера.

Последовательность проведения в домашних условия:

  • Помыть голову подходящим шампунем и подождать некоторое время пока они подсохнут.
  • Далее, наносится двухфазный бальзам и выдерживается на поверхности согласно инструкции.
  • Затем надо нанести по очереди оставшиеся два препарата, как указано на упаковке.
  • После этого необходимо равномерно высушить волосы с помощью фена, главное, чтобы воздух был не горячим.
  • После полного высушивания локоны готовы к причёске.

Если придерживаться последовательности этапов и правил нанесения средства, можно самостоятельно добиться высокого результата от процедуры.

В этом видео представлена пошаговая процедура экранирования, где можно увидеть разницу между тем, какие волосы были, а какие стали.

Качественные наборы и средства для экранирования

На рынке косметологии каждый день появляются все новые производители средств для восстановления волос.

Эффективными являются:

  • Q3 Therapy Estel.

Этот набор препаратов укрепляет и увлажняет повреждённые волосы. Средства способны в полном объёме восстановить щелочной баланс. Препарат прекрасно защищает локоны от воздействия на них ультрафиолета и химических веществ для укладки. Средство Estel Q3 необходимо использовать тем, кто желает уберечь их от воздействия красок, восстановить структуру после частых выпрямлений, избавится от секущихся кончиков.

  • Kemon.

Одно из популярных средств для экранирования. С помощью такого набора легко добиться желаемого результата. В комплекте имеется все необходимые средства, чтобы волосы выглядели соответствующим образом.

Самый известный бренд, который пользуется особой популярностью среди специалистов. Специальная формула средств позволяет быстро и качественно обезжирить волосы и, к тому же подходит для разного их типа.

Электрический монтаж и элементы монтажных соединений.

Конструкции электрического монтажа (КЭМ)

КЭМ определяются:

    элементной базой

    диапазоном частот

    структурным уровнем сборки

    условиями эксплуатации

В РЭА используются два способа электромонтажа:

    объемный (жгуты, кабели, провода)

    печатный (плоский)

Основные конструктивные элементы электромонтажа:

    элементы экранирования и заземления

    провода, кабели и монтажные материалы

    элементы крепления проводов, жгутов, кабелей

    соединительные элементы электрического монтажа

    ОПП, ДПП, МПП

    монтажные соединения приборов, узлов и блоков РЭП

На КЭМ наибольшее влияние оказывает частотный диапазон работы устройства.

На блоках, работающих на низкой частоте (до 20кГц), вредные связи возникают при появлении отдельных механических колебаний, особенно на резонансных частотах. Такие колебания могут быть вызваны нарушением жесткости крепления элементов магнитных цепей, некоторых деталей несущих конструкций.

Вредные связи резко снижаются, когда наиболее чувствительные к механическим колебаниям первые каскады усилителей, кристаллические резонаторы или электромеханические фильтры устанавливают на эластичные основания (амортизаторы).

Во избежании возникновения неуправляемой обратной связи вход сигнала необходимо располагать как можно дальше от выхода или тщательно экранировать их друг от друга.

Низкочастотное устройство необходимо надежно предохранять от влияния магнитных полей переменного тока. Для этого при монтаже блоков широко применяют провода связанные в жгуты.

Закрепление монтажного провода производится так, чтобы между проводниками и металлическими стенками несущих конструкций не возникали индуктивные связи.

В блоках, работающих на средних частотах (от 20 кГц до 1 МГц), особенно ощутима связь между входными и выходными электродами транзисторов. В этом случае управляющие цепи каждого каскада выполняют короткими, а сами каскады располагают последовательно. Элементы схемы каждого каскада размещены вблизи «своего» транзистора.

Элементы, создающие магнитные поля, экранируют.

Компоновка и электромонтаж блоков высокой частоты (от 1 МГц до 100МГц) является более сложной задачей и особенно в усилительной аппаратуре с большим коэффициентом усиления.

В этом диапазоне весьма ощутимо влияние емкости электромонтажа и электромагнитного поля.

Для достижения минимальных излучений внутри блоков каскады схемы выполняют в виде отдельных узлов, тщательно экранируя их друг от друга и от внешних возбудителей.

Колебательные контуры выполняют на тореэдальном сердечнике. Общую экранировку выполняют двухслойными экранами из пермалоя и меди.

Во избежании взаимных связей между проводниками, их разделяют достаточно широкими промежутками и экранируют от магнитных полей.

Если снизить потери короткими проводниками не удается, то связи выполняют коаксиальным кабелем.

Чем выше частота, тем сильнее сказывается влияние линий связи, и тем качественнее должно производиться экранирование и заземление.

Блоки СВЧ (от 100 до 3000МГц) по КЭМ резко отличаются от РЭА более низких частот.

Уже при частоте 400-600 МГц потери на столько возрастают, что вместо проводников используют коаксиальные кабели, а при частоте более 1500 МГц - волноводы.

      Основные виды помех и способы их устранения.

Существует 3 вида помех.

    магнитные

    электрические

    кондуктивные

Причины возникновения магнитных помех является протекание переменного тока в проводниках и катушках индуктивности.

Электрические помехи возникают при прохождении тока частотой выше 10 МГц.

Кондуктивные помехи возникают в результате общих цепей питания или нагрузки основного (полезного) и наводимого (вредного) сигнала.

Основными способами, применяемыми для борьбы с помехами, являются: экранирование и заземление.

4.2.1 Экранирование

Экраны применяются для того, чтобы локализовать действие источника помех или приемника помех.

Экран представляет собой металлическую перегородку, разделяющую две области пространства и предназначенную для регулирования распространения электрических и магнитных полей от одной из этих областей к другой.

Главное назначение экрана – ослабление напряженности электрического и (или) магнитного поля.

В зависимости от назначения различают экраны с внутренними источниками помех и экраны внешнего электромагнитного поля, во внутренней полости которых помещают чувствительные к помехаи узлы.

Классификация экранов

По типу поля помехи

Магнитно-статические ()

Электростатические (
)

Электромагнитные (
)

По конструктивной форме

прямоугольные

цилиндрические

сферические

По материалу и конструкции стенок экрана

магнитный материал (
)

немагнитный материал (
)

фольгированный материал (d=0,01…0,05 мм)

многослойные

сеточные

радиопоглощающий материал

Определение типов поля помехи.

Область пространства вокруг условного излучателя делится на ближнюю и дальнюю зону.

Если расстояние до излучателя
(- длина волны), то будет ближняя зона и помеха может быть магнитная или электрическая.

Если излучатель представлен в виде электрического диполя – помеха электрическая.

Если излучатель – рамка с током – помеха магнитостатическая.

Если
- волна электромагнитная, где магнитная и электрическая составляющие равны.

Эффективность экранирования – это уменьшение напряженности магнитного и электрического поля.

К э =20lg(Е 0 /Е 1) – коэффициент эффективности экранирования электрической волны.

К э =20lg(Н 0 /Н 1) – коэффициент эффективности экранирования магнитной волны.

Для электромагнитной волны эффективность экранирования складывается из двух видов потерь К отр и К погл.

К э =К отр +К погл.

К погл определяется одинаково для всех видов полей.

К отр зависит от вида поля и вычисляется по разному (формулы в справочнике).

4.2.2 Электромагнитное экранирование

Переменное высокочастотное электромагнитное поле при прохождении ч/з металлический лист, либо перпендикулярно, либо под некоторым углом его пл-ти наводит в этом листе вихревые токи, после которых ослабляется внешнее поле, в этом случае лист – электромагнитный экран.

Примером таких экранов могут служить корпуса РЭУ (стенки, крышки). Расчет электромагнитных экранов различен для различного диапазона частот внешних полей.

Расчет электромагнитных экранов:

Исходными данными для расчета электромагнитной помехоустойчивости является:

1.Конструкционные параметры изделия, спектр частот f i , соответственная напряженность электр. поля E(f i) или магнитная индукция B(f i).

2.Или их допустимые значения.

Следует отметить, что наибольшее влияние на работоспособность аппаратуры оказывает магнитная составляющая электромагнитного поля.

Если магнитное поле с f i , будет пересекать пл-дь S, то получим:
.

В случае анализа помехоустойчивости печатных узлов, наиболее чувствительными эл-ми явл. микросхемы, тогда S-наибольшая пл-дь замкнутого контура:
- коэффициент экрана.

Последовательность расчета экрана:

1.Определяем тип поля помехи.

2.Выбираем конструктивную форму экрана, которая может быть выполнена в виде прямоугольной, цилиндрической и сферической. Форма экрана оказывает влияние на хар-ое сопротивление среды экрана.

Формы экранов:


R Э =r э

- резонансная частота.

3. Выбор материала и конструкций стенок экрана.

Наибольшее влияние на эффективность экранирования влияет материал. Количественно, величину характеризующую экранированное действие материала рассчитывают следующим образом:

- глубина проникновения (показывает, на какой глубине магнитное поле ослабнет в е-раз;

f-частота поля;

 - магнитная проницаемость;

 - удельная проводимость материала экрана.

Если экран работает в магнитном поле ближней зоны, то эффективность магнитных материалов значительно выше немагнитных, так как >>1.

В электромагнитном поле дальней зоны немагнитные материалы, обладающие большей проводимостью, по сравнению с магнитными обеспечивают более высокую эффективность экранирования.

Достоинство сеточных экранов:

Просты в изготовлении, удобны в сборке и эксплуатации, не препятствуют свободным конвективным потокам воздействия, светопрониц., позволяют получить высокую эффективность экранирования во всем диап. частот.

Недостаток: невысокая механическая прочность.

Экранирующие свойства сеток проявляются в рез-те отражения электромагнитной волны от ее пов-ти.

Основные параметры сетки: Шаг сетки S с, радиус проволоки r с, удельная проводимость материала .

4. Рассчитываем эффективность экранирования выбранного экрана, а при необходимости его величину.

Шунтирование – отвод лишней энергии.



 ф – длина фронта;

Электромагнитное экранирование заключается в шунтировании большей части или всей нарезной емкости на корпус. На Рис.1,2,3 изображены возможные случаи расположения источника помех А и приемника помех В.

Рис.1 – корпус удален от приемника помех на значительное расстояние и емкостью C AB можно пренебречь.

С целью улучшения экранирования, на обеих сторонах ПП, сигн. и заземл. экранные проводники чередуют таким образом, чтобы против сигнальной линией, проходящей с одной стороны платы, всегда располагалась заземляющая линия с др. стороны платы, при этом каждая сигнальная линия оказывается окруженной 3-мя заземленными линиями. В рез-те чего достигается эффективная экранировка от внешних помех.

Рис. Уплотнение разборных (прижимных соединений) с помощью прокладок.

Наиболее существенное ослабление воздействиям ЭМИ на электронные системы и их элементы можно получить, применяя электромагнитные экраны .

Электромагнитными экранами называются конструкции, предназначенные для ослабления электромагнитных полей, создаваемых какими-либо источниками в некоторой области пространства, не содержащей этих источников, и широко используемые в современной электротехники.

В подавляющем большинстве случаев электромагнитные экраны делаются из металла: меди, алюминия, стали.

Принцип действия электромагнитного экрана заключается в следующем. Под действием первичного поля на поверхности экрана индуцируются заряды, а в его толще – токи и магнитная поляризация. Эти заряды, токи и поляризация создают вторичное поле. От сложения вторичного поля с первичным образуется результирующее поле, которое оказывается слабее первичного в защищаемой области пространства.

Электромагнитный экран – система линейная; отсюда следует, что для него справедлив принцип взаимности перемещений. Сказанное, в частности, означает, что эффективность экрана - коробки сохраняется одной и той же независимо от того расположен ли внутри него источник поля или защищенная область пространства. Это положение имеет большое практическое значение, так как при излучении эффективности экранирования позволяет ограничиться случаем расположения источника поля внутри экрана.

Количественную оценку эффективности электромагнитного экрана (эффективность экранирования) можно характеризовать отношением напряженности поля в защищенной области пространства при отсутствии экрана Е 0 , Н 0 и при наличии его (Е , Н ):

Величина Э Е , Н может быть выражена в простых отношениях или в децибелах (дБ).

Эффективность экрана существенно зависит от характера источника поля. Разнообразие возможных источников бесконечно: однако любой реальный источник может быть с необходимой точностью представлен в виде более или менее сложной совокупности электрических диполей и витков (рамок) с током (магнитных диполей).

В основе различия поведения экрана по отношению к разным реальным источникам лежит различие в его поведении по отношению к электрическому и магнитному диполям. Последнее различие является следствием разной структуры полей этих двух источников. В свободном пространстве при

где r – расстояние от источника;

λ – длина волны, различие в структурах полей обоих источников стирается: в любой точке пространства Е и Н практически синфазны, а их отношение оказывается почти такими же, как и в плоской волне, т.е. Е /Н = 120π Ом.

При r << λ/2πотношение Е /H зависит от положения точки наблюдения. В экваториальной плоскости (плоскости, проходящей через диполя перпендикулярно к его оси) оно приближенно и определяется следующими формулами:

Для электрического диполя:

Для магнитного диполя

Таким образом, с уменьшением r или увеличением λ (с уменьшением частоты f ) отношение Е к Н в случае электротехнического поля растет, роль магнитной составляющей убывает, и оказывается возможным рассматривать поле как квазиэлектростатическое.

В общем случае экран не только ослабляет, но и искажает поле источника в защитной области пространства. Поэтому его эффективность различна для электрической и магнитной составляющих поля. Это обстоятельство существенно затрудняет ее количественную оценку.

Только в простейших случаях эффективность экрана определяется однозначно (например, экранирование полупространства от плоской электромагнитной волны бесконечным однородным экраном).

Для последнего случая можно получить формулу, удобную для практических расчетов:

где σ – удельная проводимость материала экрана, см/м;

d – толщина экрана, м;

δ – эквивалентная глубина проникновения,

т.е. расстояние, на котором электромагнитная волна ослабевает в е раз и отстает на π/2 .

где A – коэффициент материала;

μ a – абсолютная магнитная проницаемость;

f – частота электромагнитного излучения, Гц.

Электрофизические параметры, данные об эквивалентной глубине проникновения для материалов экранов, представляющих наибольший интерес, приведены в таблицах 5.8 и 5.9.

Таблица 5.8 Электрические параметры некоторых металлов

Таблица 5.9. Эквивалентная глубина проникновения δ для различных экранирующих материалов, мм

Частота f , Гц Медь Латунь Алюминий Сталь Пермаллой μ r = 12 000
μ r = 50 μ r = 100
10 2 6,700 12,400 8,800 2,300 1,540 0,380
10 3 2,100 3,900 2,750 0,700 0,490 0,120
10 4 0,670 1,240 0,880 0,230 0,154 0,038
10 5 0,210 0,390 0,275 0,070 0,049 0,012

На высоких частотах при относительно большой толщине материала d > δ эффективность экрана можно определить по приближенному уравнению

где d – толщина стенок экрана;

δ – эквивалентная глубина проникновения;

D – ширина прямоугольного экрана или диаметр цилиндрического или сферического;

μ r – относительная магнитная проницаемость;

m – коэффициент формы экрана, для прямоугольного m = 1, для цилиндрического m = 2 и для сферического m = 3.

Величину Э пл можно рассматривать как произведение двух сомножителей:

Первый из сомножителей характеризует эффективность отражения первичной падающей волны электрического поля от поверхности экрана.

Можно получить следующие приближенные зависимости для оценки величины первого сомножителя зависимости (5.14):

Из формулы (5.15) видно, что с увеличением толщины экрана величина Э пл.отр возрастает до некоторой величины, после чего не меняется. Это и понятно, так как при d > δ явления на поверхности практически перестают зависеть от d .

С повышением частоты эффективность отражения сначала сохраняется неизменной, а потом начинает уменьшаться и при d > δ оказывается практически обратно пропорциональной . Причина в том, что из-за поверхностного эффекта возрастает поверхностное сопротивление экрана.

Второй сомножитель формулы (5.14) характеризует степень ослабления электрической составляющей при проникновении поля сквозь толщу стенки экрана. Приближенно его можно оценить по зависимости

Формулы (5.12) позволяют сравнивать между собой различные металлы, как материалы для экрана. Действительно, при d/ δ < 0,1 эффективность экрана пропорциональна удельной проводимости δ и не зависит от магнитной проницаемости материала. Следовательно, при равных толщинах медный экран лучше алюминиевого и намного лучше стального. Однако с ростом толщины d или частоты f картина изменяется, так как существенную роль при определении Э начинает играть член е d/ δ . А так как у стали толщина поверхностного слоя много меньше, чем у меди и алюминия, то стальной экран оказывается более эффективным. Граничная частота f гр, при которой эффективность стального и медного экранов одна, зависит от d и определяется формулой

где μ – относительная магнитная проницаемость стали.

При произвольной форме экрана и конечных размерах диполя (источника поля) количественная оценка эффективности экранирования сильно затруднена. Поэтому для получения такой оценки обратимся к простейшему случаю – шаровому экрану.

Эффективность шарового экрана с внутренним радиусом R и толщиной стенок d по отношению к элементарному диполю, расположенному в его центре, при d << R << λ2π определяется формулой

где Э пл находится из (5.12).

Электромагнитная волна элементарного диполя не плоская, а сферическая; однако при d << R можно считать поле в толще стенок экрана плоским и воспользоваться для оценки ослабления его формулой (5.17), а для оценки ослабления поля от экрана следующей приближенной зависимостью:

Нетрудно видеть, что с повышением частоты эффективность ослабления уменьшается.

Расчеты и испытания показывают, что на частотах ниже 100 кГц плоский стальной экран менее эффективен, чем медный и алюминиевый, но на частотах выше 1 МГц его эффективность уже на пять порядков выше эффективности плоского медного экрана. Эти соотношения сохраняются и для шаровых экранов при экранировании диполей обоих типов. Напомним, что большая часть энергии ЭМИ излучается в диапазоне частот 15 ÷ 30 кГц.

Эффективность экранирования замкнутыми экранами источников типа электрического диполя очень велика. Даже при толщине стенок 0,1 мм она на всех частотах при всех практически возможных размерах и для всех трех рассмотренных материалов превышает 106 (120 дБ).

При экранировании источников типа магнитный диполь на частотах порядка 10 кГц и ниже для получения большой эффективности экран должен быть толстостенным. Так на частоте 10 кГц при R = 100 мм эффективность экранов различной толщины принимает значения, приведенные в таблице 5.10.

Таблица 5.10. Эффективность экранов различной толщины

В случае замкнутого экрана поле может проникнуть в экран только через толщу стенок.

Из сказанного ранее следует, что соответствующим выбором материала экрана и толщины стенок принципиально можно получить сколь угодно большую эффективность экранирования. В реальных же экранах неизбежны более или менее значительные отверстия и щели, которые образуют дополнительный канал для проникновения поля. Вследствие этого эффективность экрана уменьшается.

Если стенки очень тонкие, а отверстия и щели незначительны, то поле внутри экрана создается в основном за счет проникновения через стенки. Смена материала и утолщение стенок могут в этом случае повысить эффективность экранирования. Напротив, если стенки относительно толстые, а отверстия и щели значительны, то поле внутри экрана создается в основном за счет проникновения через эти отверстия и щели, так что утолщение стенок малоэффективно.

В большинстве ситуаций свойства экрана часто определяются не толщиной и типом материала, а дефектами – отклонениями от идеальной конструкции. Этими дефектами являются в основном различные отверстия и щели (нарушения однородности экрана).

Анализ проникновения электромагнитного поля через малое отверстие в бесконечно тонком идеально проводящем экране позволяет сделать следующие выводы. Круглое и квадратное отверстие одной и той же площади пропускают электромагнитное поле практически одинаково. Через узкую щель поле проникает слабее, чем через квадратное отверстие той же площади. Особый интерес представляет то обстоятельство, что при данной форме отверстия момент эквивалентности диполя пропорционален площади этого отверстия в степени три вторых. Из этого следует, что замена одного большого отверстия несколькими малыми, общая площадь которых равна площади этого большого отверстия, будет способствовать улучшению эффективности экрана. Расчеты показывают, что замена одного большого отверстия N малыми с той же общей площадью, ведет к ослаблению поля, проникающего в защищаемую область пространства в раз.

Ориентировочно ослабление поля, проникающего через отверстие, вследствие конечности толщины стенок d можно учесть, рассматривая отверстие как запредельный волновод – волноводный фильтр. Обозначив коэффициент ослабления такого поля через Э α , можно соответственно принять

где α зависит от характера поля, формы и величины отверстия. Значение α для круглого и прямоугольного отверстия приведены в таблице 5.11.

Проникновение поля через отверстие может быть существенно ослаблено путем насадки на это отверстие патрубка.

При этом величина Э α может быть найдена по формуле (5.20) с заменой в ней d на длину патрубка l .

Таблица 5.11. Зависимость коэффициента α от формы и величины отверстия в экране

Значительное ослабление проникновения поля через отверстие можно получить, применяя разделение одного большого отверстия на несколько малых с одновременным применением патрубков .

Заключение

В учебном пособии рассматриваются основные проблемы ЭМС различных радиоэлектронных средств.

В первой главе проведен анализ основных источников ЭВМ и рассмотрены предельно доступные уровни электромагнитного поля для потребительской продукции, на рабочих местах и населения.

Во второй главе рассмотрены естественные источники, подробно описывается электромагнитная обстановка, дана теория области близких и волновых зон грозовых разрядов. Проведены основные методы грозозащиты оборудования, локальных сетей, линий передач (коаксиальных).

Подробно рассмотрен пример устройства грозозащиты для бытового применения.

Мощные радиопередающие средства создают МЭМП в первую очередь излучением антенн как над поверхностью земли, так и в подземный район и излучения РЭС.

Приведена инженерная методика расчета стоимости РЭС к воздействию МЭМП.

В пятой главе рассмотрена методика оценки устойчивости РЭС к воздействию электромагнитного импульса ядерного взрыва и рассмотрены практические задачи электромагнитного экранирования, решаемые в курсовом и дипломном проектировании.

Список литературы

1. Иванов В.А. Электромагнитная совместимость радиоэлектронных средств / В.А. Иванов, Л.Я. Ильинский, М.И. Фузик. – К.: Техника, 1983. – 120 с.

2. Князев, А.Д. Элементы теории и практики электромагнитной совместимости радиоэлектронных средств. – М.: Радио и связь, 1984. – 336 с.

3. Радиоэлектронные средства и мощные электромагнитные помехи / под ред. В.И. Кравченко. – М.: Радио и связь, 1984. – 256 с.

4. Крылов, В.А. Защита от электромагнитных излучений / В.А. Крылов, Т.В. Югенков. – М.: Советское радио, 1972. – 216 с.

5. Уайт, Д. Электромагнитная совместимость радиоэлектронных средств и непреднамеренные помехи / Д. Уайт; пер. с англ. – М.: Советское радио, 1977. – Вып. 1. – 348 с.

6. ГОСТ 11001–80. Измерители радиопомех. Общие требования.

7. Михайлов, А.С. Измерение параметров ЭМС РЭС / А.С. Михайлов. – М.: Связь, 1980. – 244 с.

8. Михайлов, А.С. Справочник по расчету электромагнитных экранов / А.С. Михайлов. – М.: Энергоатом изд-во, 1988. – 244 с.

9. ГОСТ Р 51724–2001. Экранированные объекты, помещения, технические средства. Поле гипогеомагнитное.

10. САНПИН 2.2.4.1191–03 Электромагнитные поля в производст-венных условиях. Постановление о введении в действие санитарных правил и нормативов.


Введение
Проблема электромагнитной совместимости
1.1 Электромагнитное поле, его виды и классификация
1.2 Основные источники электромагнитного поля
Естественные источники
2.1 Влияние грозовых разрядов на радиоэлектронные средства
2.2 Электромагнитная обстановка
Грозозащита
3.1 Защита оборудования от грозы
3.2 Грозозащита локальных сетей
3.3 Защита коаксиальных кабелей
3.4 Пример устройства грозозащиты
Мощные радиопередающие средства
4.1 Электромагнитное излучение антенн
4.2 Формирование ЭМО и ее характеристики
4.3 Расчеты стойкости РЭС к воздействию МЭМП
4.3.1 Формирование модели взаимодействия МЭПМ с РЭС
4.3.2 Формирование программы
4.3.3 Обсуждение результатов расчета
Устойчивость радиоэлектронных средств к воздействию электромагнитного импульса ядерного взрыва
5.1 Оценка устойчивости электромагнитных систем к воздействию ЭМИ
5.2 Методы повышения устойчивости электронных систем к воздействию ЭМИ
5.3 Электромагнитное экранирование
Заключение
Список литературы

Что еще почитать