Что служит сырьем для производства строительных материалов. Природные минеральные материалы

Министерство науки и образования Украины

Киевский национальный университет строительства и архитектуры

Кафедра строительного материаловеденья

Реферат на тему: «Использование вторичных продуктов в изготовлении строительных материалов»


ПЛАН:

1. Проблема промышленных отходов и основные направления ее решения

в) Плавленые и искусственные каменные материалы на основе шлаков и зол

в) Материалы из отходов лесохимии и переработки древесины

4. Список литературы

1. Проблема промышленных отходов и основные направления ее решения.

а) Развитие промышленности и накопление отходов

Характерной особенностью научно-технического процесса является увеличение объема общественного производства. Бурное развитие производительных сил вызывает стремительное вовлечение в хозяйственный оборот все большего количества природных ресурсов. Степень их рационального использования остается, однако, в целом весьма низкой. Ежегодно человечество использует приблизительно 10 млрд. т. минеральных и почти столько же органических сырьевых продуктов. Разработка большинства важнейших полезных ископаемых в мире идет быстрее, чем наращиваются их разведанные запасы. Около 70% затрат в промышленности приходится на сырье, материалы, топливо и энергию. В то же время 10…99% исходного сырья превращаются в отходы, сбрасываемые в атмосферу и водоемы, загрязняющие землю. В угольной промышленности, например, ежегодно образуется примерно 1,3 млрд. т. Вскрышных и шахтных пород и около 80 млн. т. Отходов углеобогащения. Ежегодно выход шлаков черной металлургии составляет около 80 млн. т., цветной 2,5, зол и шлаков ТЭС 60…70 млн. т., древесных отходов около 40 млн. м³.

Промышленные отходы активно влияют на экологические факторы, т.е. оказывают существенное влияние на живые организмы. В первую очередь это относится к составу атмосферного воздуха. В атмосферу поступают газообразные и твердые отходы в результате сгорания топлива и разнообразных технологических процессов. Промышленные отходы активно воздействуют не только на атмосферу, но и на гидросферу, т.е. водную среду. Под влиянием промышленных отходов, сосредоточенных в отвалах, шлаконакопителях, хвостохранилищах и т.д., загрязняется поверхностный сток в районе размещения промышленных предприятий. Сброс промышленных отходов приводит, в конечном счете, к загрязнению вод Мирового океана, которое приводит к резкому снижению его биологической продуктивности и отрицательно влияет на климат планеты. Образование отходов в результате деятельности промышленных предприятий негативно сказывается на качестве почвы. В почве накапливаются избыточные количества губительно действующих на живые организмы соединений, в том числе канцерогенные вещества. В загрязненной «больной» почве идут процессы деградации, нарушается жизнедеятельность почвенных организмов.

Рациональное решение проблемы промышленных отходов зависит от ряда факторов: вещественного состава отходов, их агрегатного состояния, количества, технологических особенностей и т.д. Наиболее эффективным решением проблемы промышленных отходов является внедрение безотходной технологии. Создание безотходных производств осуществляется за счет принципиального изменения технологических процессов, разработке систем с замкнутым циклом, обеспечивающих многократное использование сырья. При комплексном использовании сырьевых материалов промышленные отходы одних производств являются исходными сырьевыми материалами других. Важность комплексного использования сырьевых материалов можно рассматривать в нескольких аспектах. Во-первых, утилизация отходов позволяет решить задачи охраны окружающей среды, освободить ценные земельные угодья, занимаемые под отвалы и шламохранилища, устранить вредные выбросы в окружающую среду. Во- вторых, отходы в значительной степени покрывают потребность ряда перерабатывающих отраслей в сырье. В-третьих, при комплексном использовании сырья снижаются удельные капитальные затраты на единицу продукции и уменьшается срок их окупаемости.

Из отраслей-потребителей промышленных отходов наиболее емкой является промышленность строительных материалов. Установлено, что использование промышленных отходов позволяет покрыть до 40% потребности строительства в сырьевых ресурсах. Применение промышленных отходов позволяет на 10…30% снизить затраты на изготовление строительных материалов по сравнению с производством их из природного сырья, экономия капитальных вложений достигает 35..50%.


б) Классификация промышленных отходов

К настоящему времени отсутствует всесторонняя классификация промышленных отходов. Это обусловлено чрезвычайной пестротой их химического состава, свойств, технологических особенностей, условий образования.

Все отходы промышленности можно разделить на две большие группы: минеральные (неорганические) и органические. Наибольшее значение для производства строительных материалов имеют минеральные отходы. На их долю падает преобладающая доля всех отходов, производимых добывающими и перерабатывающими отраслями промышленности. Эти отходы и в большей мере изучены, чем органические.

Баженовым П.И. предложено классифицировать промышленные отходы в момент выделения их из основного технологического процесса на три класса: А; Б; В.

Продукты класса А (карьерные остатки и остатки после обогащения на полезное ископаемое) имеют химико-минералогический состав и свойства соответствующих горных пород. Область их применения обусловлена агрегатным состоянием, фракционным и химическим составом, физико-механическими свойствами.

Продукты класса Б – искусственные вещества. Они получены как побочные продукты в результате физико-химических процессов, протекающих при обычных или чаще высоких температурах. Диапазон возможного применения этих промышленных отходов шире, чем продуктов класса А.

Продукты класса В образуются в результате физико-химических процессов, протекающих в отвалах. Такими процессами могут быть самовозгорание, распад шлаков и образование порошка. Типичными представителями отходов этого класса являются горелые породы.


2. Опыт применения отходов металлургии, топливной промышленности и энергетики


а) Вяжущие материалы на основе шлаков и зол

Основная масса отходов при получении металлов и сжигании твердого топлива образуется в виде шлаков и зол. Кроме шлаков и зол при производстве металла в больших количествах образуются отходы в виде водных суспензий дисперсных частиц-шламы.

Ценным и весьма распространенным минеральным сырьем для производства строительных материалов являются горелые породы и отходы углеобогащения, а также вскрышные породы и отходы обогащения руд.

Производство вяжущих материалов относится к наиболее эффективным областям применения шлаков. Шлаковые вяжущие можно подразделить на следующие основные группы: шлакопортландцементы, сульфатно-шлаковые, известково-шлаковые, шлако-щелочные вяжущие.

Шлаки и золы можно рассматривать как в значительной мере подготовленное сырье. В их составе окись кальция (CaO) связана в различных химических соединениях, в том числе и в виде двухкальциевого силиката - одного из минералов цементного клинкера. Высокий уровень подготовки сырьевой смеси при применении шлаков и зол обеспечивает повышение производительности печей и экономии топлива. Замена глины доменным шлаком позволяет снизить на 20% содержание известкового компонента, уменьшить при сухом производстве клинкера удельный расход сырья и топлива на 10…15%, а также повысить производительность печей на 15%.

Применением маложелезистых шлаков – доменных и феррохромовых – и созданием восстановительных условий плавки получают в электропечах белые цементы. На основе феррохромовых шлаков окислением металлического хрома в расплаве можно получить клинкеры, при использовании которых цементы с ровной и стойкой окраской.

Сульфатно-шлаковые цементы – это гидравлические вяжущие вещества, получаемые совместным тонким измельчением доменных гранулированных шлаков и сульфатного возбудителя твердения – гипса или ангидрида с небольшой добавкой щелочного активизатора: извести, портландцемента или обожженного доломита. Наиболее широкое распространение из группы сульфатно-шлаковых получил гипсошлаковый цемент, содержащий 75…85% шлака, 10…15% двуводного гипса или ангидрида, до2% окиси кальция или 5% портландцементного клинкера. Высокая активизация обеспечивается при использовании ангидрита, обожженного при температуре около 700º С, и высокоглиноземистых основных шлаков. Активность сульфатно-шлакового цемента существенно зависит от тонкости измельчения. Высокая удельная поверхность (4000…5000 см²/г) вяжущего достигается с помощью мокрого помола. При достаточно высокой тонкости измельчения в рациональном составе прочность сульфатно–шлакового цемента не уступает прочности портландцемента. Как и другие шлаковые вяжущие, сульфатно-шлаковый цемент имеет не большую теплоту гидратации – к 7 сут., что позволяет применять его при возведении массивных гидротехнических сооружений. Этому способствует также его высокая стойкость к воздействию мягких сульфатных вод. Химическая стойкость сульфатно-шлакового цемента выше, чем шлакопортландцемента, что делает его применение особенно целесообразным в различных агрессивных условиях.

Известково-шлаковые и известково-зольные цементы – это гидравлическиевяжущие вещества, получаемые совместным помолом доменного гранулированного шлака или золы уноса ТЭС и извести. Их применяют для приготовления строительных растворов марок не более М 200. Для регулирования сроков схватывания и улучшения других свойств этих, вяжущих при изготовлении их вводится до 5% гипсового камня. Содержание извести составляет 10%...30%.

Известково-шлаковые и зольные цементы по прочности уступают сульфатно-шлаковым. Их марки: 50, 100, 150 и 200. Начало схватывания должно наступать не ранее чем через 25 мин., а конец – не позднее чем через 24 ч. после начала затворения. При снижении температуры, особенно после 10º С, нарастание прочности резко замедляется и, наоборот, повышение температуры при достаточной влажности среды способствует интенсивному твердению. Твердение на воздухе возможно лишь при после достаточного продолжительного твердения (15…30 сут.) во влажных условиях. Для этих цементов характерна низкая морозостойкость, высокая стойкость в агрессивных водах и малая экзотермия.

Шлакощелочные вяжущие состоятиз тонкоизмельченногогранулированного шлака (удельная поверхность≥3000 см²/г) и щелочного компонента – соединений щелочных металлов натрия или калия.

Для получения шлакощелочного вяжущего приемлемы гранулированные шлаки с различным минералогическим составом. Решающим условием их активности является содержание стекловидной фазы, способной взаимодействовать со щелочами.

Свойства шлакощелочного вяжущего зависят от вида, минералогического состава шлака, тонкости его помола, вида и концентрации его раствора щелочного компонента. При удельной поверхности шлака 3000…3500 см²/г количество воды для образования теста нормальной густоты составляет 20…30% массы вяжущего. Прочность шлакощелочного вяжущего при испытании образцов из теста нормальной густоты составляет 30…150 МПа. Для них характерен интенсивный рост прочности как в течении первого месяца, так и в последующие сроки твердения. Так, если прочность портландцемента через 3 мес. твердения в оптимальных условиях превышает марочную примерно в 1,2 раза, то шлакощелочного вяжущего в 1,5 раза. При тепловлажностной обработке процесс твердения ускоряется также интенсивнее, чем при твердении портландцемента. При обычных режимах пропаривания, принятых в технологии сборного железобетона, в течение 28 сут. достигается 90…120% марочной прочности.

Щелочные компоненты, входящие в состав вяжущего, выполняют роль противоморозной добавки, поэтому шлакощелочные вяжущие достаточно интенсивно твердеют при отрицательных температурах.


б) Заполнители из шлакозольных отходов


Шлаковые и зольные отходы представляют богатейшую сырьевую базу для производства как тяжелых, так и легких пористых заполнителей бетона. Основными видами заполнителей на основе металлургических шлаков являются шлаковый щебень и шлаковая пемза.

Из топливных шлаков и зол изготавливают пористые заполнители, в том числе аглопорит, Зольный гравий, глинозольный керамзит.

К эффективным видам тяжелых заполнителей бетона, не уступающим по физико-механическим свойствам продукта дробления плотных природных каменных материалов, относится литой шлаковый щебень. При производстве этого материала литой огненно-жидкий шлак из шлаковозных ковшей сливается слоями толщиной 200…500 мм на специальные литейные площадки или в тарпециевидные ямы-траншеи. При выдерживании в течение 2…3 ч. на открытом воздухе температура расплава в слое снижается до 800° С, и шлак кристаллизуется. Затем он охлаждается водой, что приводит к развитию в слое шлака многочисленных трещин. Шлаковые массивы на литейных площадках или в траншеях разрабатываются эскаваторами с последующим дроблением.

Литой шлаковый щебень характеризуется высокими морозо и жаростойкостью, а также сопротивлением истиранию. Стоимость его в 3…4 раза ниже, чем щебня из природного камня.

Шлаковая пемза (тормозит) – одно из наиболее эффективных видов искусственных пористых заполнителей. Ее получаю поризацией шлаковых расплавов в результате их быстрого охлаждения водой, воздухом или паром, а также воздействием минеральных газообразователей. Из технологических способов получения шлаковой пемзы наиболее часто применяются бассейновый, струйный и гидроэкранный способы.

Топливные шлаки и золы являются лучшим сырьем для производства искусственного пористого заполнителя – аглопорита. Это обусловлено, во-первых, способностью золошлакового сырья так же, как глинистых пород и других алюмосиликатных материалов, спекаться на решетках агломерационных машин, во-вторых, содержанием в нем остатка топлива, достаточных для процесса агломерации. При использовании обычной технологии аглопорит получают в виде щебня из песка. Из зол ТЭС можно получать и аглопоритовый гравий, имеющий высокие технико-экономические показатели.

Главная особенность технологии аглопоритового гравия в том, что в результате агломерации сырья образуется не спекшийся корж, а обожженные гранулы. Сущность технологии производства аглопоритового гравия заключается в получении сырцовых зольных гранул крупностью 10…20 мм, укладке их на колосники ленточной агломерационной машины слоем толщиной 200…300 мм и термической обработке.

Производство аглопритового по сравнению с обычным производством аглопорита характеризуется снижением на 20…30% расхода технологического топлива, более низким разрежением воздуха в вакуум-камерах и увеличением удельной производительности в 1,5…3 раза. Аглопоритовый гравий имеет плотную поверхностную оболочку и поэтому при практически равной объемной массе со щебнем отличается от него более высокой прочностью и меньшим водопглощением. Расчеты что замена 1 млн. м³ привозного природного щебня агдопортовым гравием из золы ТЭС лишь за счет сокращения транспортных расходов при перевозках на расстояние 500…1000 км дает экономии 2 млн. рублей. Применение аглопорита на основе зол и шлаков ТЭС позволяет получать легкие бетоны марок 50…4000 с объемной массой от 900 до 1800 кг/м³ при расходе цемента от 200 до 400 кг/м³.

Зольный гравий получают гранулированием подготовленной золошлаковой смеси или золы-уноса ТЭС с последующим спеканием и вспучиванием во вращающейся печи при температуре 1150…1250° С. На зольном гравии получают легкие бетоны с такими же примерно показателями, как и при использовании аглопоритного гравия. При производстве зольного гравия эффективны лишь вспучивающие золы ТЭС с содержанием топливных остатков не более 10%.

Глинозольный керамзит – продукт вспучивания и спекания во вращающейся печи гранул, сформированных из смеси глин и золошлаковых отходов ТЭС. Зола может составлять от 30 до 80% всей массы сырья. Введение глинистого компонента улучшает формовочные свойства шихты, способствует выгоранию остатков угля в золе, что позволяет использовать золы с повышенным содержанием несгоревшего топлива.

Объемная масса глинозольного керамзита составляет 400..6000 кг/м³, а прочность при сдавливании в стальном цилиндре 3,4…5 МПа. Главные преимущества производства глинозольного керамзита по сравнению с аглопоритом и зольным гравием – возможность использования золы ТЭС из отвалов во влажном состоянии без использования сушильных и помольных агрегатов и более простой способ формирования гранул.

в) Плавленые и искусственные каменные материалы на основе шлаков и зол

К основным направлениям переработки металлургических и топливных шлаков, а также зол наряду с производством вяжущих, заполнителей и бетонов на их основе относится получение шлаковой ваты, литых материалов и шлакоситталов, зольной керамики и силикатного кирпича.

Шлаковая вата – разновидность минеральной ваты, занимающей ведущее место среди теплоизоляционных материалов, как по объему выпуска, так и по строительно-техическим свойствам. В производстве минеральной ваты доменные шлаки нашли наибольшее применение. Использование здесь шлака вместо природного сырья дает экономию до 150 грн. на 1 т. Для получения минеральной ваты наряду с доменными применяются также ваграночные, мартеновские шлаки и шлаки цветной металлургии.

Требуемое соотношение кислотных и основных оксидов в шихте обеспечивается применением кислых шлаков. Кроме того, кислые шлаки более устойчивы против распада, недопустимого в минеральной вате. Повышение содержания кремнезема расширяет температурный интервал вязкости, т.е. разность температур, в пределах которых возможно волокнообразование. Модуль кислотности шлаков корректируется введением в шихту кислых или основных добавок.

Из расплава металлургических и топливных шлаков отливают разнообразные изделия: камни для мощения дорог и полов промышленных зданий, тюбинги, бордюрный камень, противокоррозионные плитки, трубы. Изготовление шлакового литья началось одновременно с внедрением в металлургию доменного процесса. Литые изделия из шлакового расплава экономически более выгодны по сравнению с каменным литьем, приближаясь к нему по механическим свойствам. Объемная масса плотных литых изделий из шлака достигает 3000 кг/м³, предел прочности на сжатие 500 МПа.

Шлакоситаллы – разновидность стеклокристаллических материалов, получаемых направленной кристаллизацией стекол. В отличие от других ситаллов сырьевыми материалами для них служат шлаки черной и цветной металлургии, а также золы сжигания каменного угля. Шлакоситаллы разработаны впервые в СССР. Они широко применяются в строительстве как конструкционные и отделочные материалы, обладающие высокой прочностью. Производство шлакоситаллов заключается в варке шлаковых стекол, формировании из них изделий и последующей их кристаллизации. Шихта для получения стекол состоит из шлака, песка, щелочесодержащих и других добавок. Наиболее эффективно использование огненно-жидких металлургических шлаков, что экономит до 30…40% всего тепла, затрачиваемого на варку.

Шлакоситаллы все шире применяются в строительстве. Плитами листового шлакосситалла облицовывают цоколи и фасады зданий, отделывают внутренние стены и перегородки, выполняют из них ограждения балконов и кровли. Шлакостиалл – эффективный материал для ступеней, подоконников и других конструктивных элементов зданий. Высокая износостойкость и химическая стойкость позволяют успешно применять Шлакоситаллы для защиты строительных конструкций и аппаратуры в химической, горнорудной и других отраслях промышленности.

Золошлаковые отходы ТЭС могут служить отощающими топливосодержащими добавками в производстве керамических изделий на основе глинистых пород, а также основным сырьем для изготовления зольной керамики. Наиболее широко применяют топливные золы и шлаки как добавки при производстве стеновых керамических изделий. Для изготовления полнотелого и пустотелого кирпича и керамических камней в первую очередь рекомендуется использовать легкоплавкие золы с температурой размягчения до 1200° С. Золы и шлаки, содержащие до 10% топлива, применяют как отощающие, а 10% и более – как топливосодержащие добавки. В последнем случае можно существенно сократить или исключить введение в шихту технологического топлива.

Разработан ряд технологических способов получения зольной керамики, где Золошлаковые отходы ТЭС являются уже не добавочным материалом, а основным сырьевым компонентом. Так, при обычном оборудовании кирпичных заводов может быть изготовлен зольный кирпич из массы, включающей золу, шлак и натриевое жидкое стекло в количестве 3% по объему. Последнее выполняет роль пластификатора, обеспечивая получение изделий с минимальной влажностью, что исключает необходимость сушки сырца.

Зольную керамику выпускают в виде прессованных изделий из массы, включающей 60…80% золы-уноса, 10…20% глины и друге добавки. Изделия поступают на сушку и обжиг. Зольная керамика может служить не только стеновым материалом, обладающим стабильной прочностью и высокой морозостойкостью. Она характеризуется высокой кислотостойкостью и низкой истераемостью, что позволяет изготавливать из нее тротуарные и дорожные плиты и изделия, обладающие высокой долговечностью.

В производстве силикатного кирпича зола ТЭС используется как компонент вяжущего или заполнителя. В первом случае расход ее достигает 500 кг., во втором – 1,5…3,5 т. на 1 тыс. шт. кирпича. При введении угольной золы расход извести снижается на 10…50%, а сланцевые золы с содержанием CaO+MgO до 40…50% могут полностью заменить известь в силикатной массе. Зола в известково-зольном вяжущем является не только активной кремнеземистой добавкой, но и способствует пластификации смеси и повышению в 1,3…1,5 раза прочности сырца, что особенно важно для обеспечения нормальной работы автоматов-укладчиков.


г) Золы и шлаки в дорожно-строительных и изоляционных материалах

Крупнотоннажным потребителем топливных зол и шлаков является дорожное строительство, где золы и золошлаковые смеси используют для устройства подстилающих и нижних слоев оснований, частичной замены вяжущих при стабилизации грунтов цементом и известью, как минеральный порошок в асфальтовых бетонах и растворах, как добавки в дорожных цементных бетонах.

Золы, полученные при сжигании углей и горючих сланцев, применяются в качестве наполнителей кровельных и гидроизоляционных мастик. Золошлаковые смеси в дорожном строительстве применяют неукрепленными и укрепленными. Неукрепленные золошлаковые смеси используют в основном в качестве материала для устройства подстилающих и нижних слоев оснований дорог областного и местного значения. При содержании не более 16% пылевидной золы их применяют для улучшения грунтовых покрытий, подвергаемых поверхностной обработке битумной или дегтевой эмульсией. Конструктивные слои дорог можно выполнить из золошлаковых смесей с содержанием золы не более 25…30%. В гравийно-щебеночных основаниях в качестве уплотняющей добавки целесообразно применять золошлаковую смесь с содержанием пылевидной золы до 50%, Содержание несгоревшего угля в топливных отходах ТЭС, применяемых для возведения дорог, не должно превышать 10%.

Также как и природные каменные материалы относительно высокой прочности, золошлаковые отходы ТЭС служат для изготовления битумоминеральных смесей, применяемых для создания конструктивных слоев дорог 3-5 категорий. Из топливных шлаков, обработанных битумом или дегтем (до 2% по массе), получают черный щебень. Смешивая подогретую до 170…200° С золу с 0,3…2% раствора битума в зеленом масле, получают гидрофобный порошок с объемной массой 450…6000 кг/м³. Гидрофобный порошок одновременно может выполнять функции гидро- и теплоизоляционного материала. Распространено применение зол в качестве наполнителя мастик.


д) Материалы на основе шламов металлургических производств

Для производства строительных материалов промышленное значение имеют нефелиновые, бокситовые, сульфатные, белые и многокальциевые шламы. Объем одних лишь нефелиновых шламов, пригодных для использования, составляет ежегодно свыше 7 млн.т.

Основным направлением применения шламовых отходов металлургической промышленности являются изготовление бесклинкерных вяжущих, материалов на их основе, получение портландцемента и смешенных цементов. В промышленности особенно широко используется нефелиновый (белитовый) шлам, получаемый при извлечении глинозема из нефелиновых пород.

Под руководством П.И. Баженова разработана технология изготовления нефелинового цемента и материалов на его основе. Нефелиновый цемент является продуктом совместного помола или тщательного перемешивания предварительного измельченных нефелинового шлама (80…85%), извести или другого активизатора, например портландцемента (15…20%) и гипса (4…7%). Начало схватывания нефелинового цемента должно наступать не ранее чем через 45 мин., конец – не позднее чем через 6ч. после его затворения, Его марки 100, 150, 200 и 250.

Нефелиновый цемент является эффективным для кладочных и штукатурных растворов, а также для бетонов нормального и особенно автоклавного твердения. ПО пластичности и времени схватывания растворы на нефелиновом цементе близки к известково-гипсовым растворам. В бетонах нормального твердения нефелиновый цемент обеспечивает получение марок 100…200, в автоклавных – марок 300…500 при расходе 250…300 кг/м³. Особенностями бетонов на нефелиновом цементе является низкая экзометрия, что важно учитывать при строительстве массивных гидротехнических сооружений, высокое сцепление со стальной арматурой после автоклавной обработки, повышенная стойкость в минерализованных водах.

Близким по составу к нефелиновому цементу являются вяжущие на основе бокситового, сульфатного и других шламов металлургических производств. Если значительная часть этих минералов гидратирована, для проявления вяжущих свойств шламов необходима их сушка в интервале 300…700° С. для активизации этих вяжущих целесообразно введение добавок извести и гипса.

Шламовые вяжущие относятся к категории местных материалов. Наиболее рационально применять их для изготовления изделий автоклавного твердения. Однако они могут, применятся и в строительных растворах, при отделочных работах, изготовлении материалов с органическими заполнителями, например фибролита. Химический состав ряда металлургических шламов позволяет применять их в качестве основного сырьевого компонента портландцементного клинкера, а также активной добавки в производстве портландцемента и смешанных цементов.


е) Применение горелых пород, отходов углеобогащения, добычи и обогащения руд

Основная масса горелых пород является продуктом обжига пустых пород, сопутствующих месторождениям каменных углей. Разновидностями горелых пород являются глиежи – гилинстые и глинисто-песчанные породы, обожженные в недрах земли при подземных пожарах в угольных пластах, и отвальные, перегоревши шахтные породы.

Возможности применения горелых пород и отходов углеобогащения в производстве строительных материалов весьма разнообразны. Горелые породы, как и другие обожженные глинистые материалы, обладают активностью по отношению к извести и используются в роли гидравлических добавок в вяжущих известково-пуццоланового типа, портландцементе, пуццолановом портландцементе и автоклавных материалах, Высокая адсорбционная активность и сцепление с органическими вяжущими позволяют применять их в асфальтовых и полимерных композициях. Естественно, обжигаемые в недрах земли или в терриконах угольных шахт горелые породы – аргиллиты, алевролиты и песчаники – имеют керамическую природу и могут, применятся в производстве жаростойких бетонов и пористых заполнителей. Некоторые горелые породы являются легкими нерудными материалами, что обусловливает их использование как заполнителей для легких растворов и бетонов.

Отходы углеобогащения – ценный вид минералогического сырья, в основном используемый в производстве стеновых керамических материалов и пористых заполнителей. По химическому составу отходы углеобогащения близки к традиционному глинистому сырью. В роли вредной примеси в них выступает сера, содержащаяся в сульфатных Ии сульфидных соединениях. Теплотворная способность их колеблется в широких пределах – от 3360 до 12600 кДж\кг и более.

в производстве стеновых керамических изделий отходы углеобогащения применяют как отощающую или выгорающую топливосодержащую добавку. До введения в керамическую шихту кусковые отходы дробят. Предварительное дробление не требуется для шлама размером частиц менее 1мм. Шлам предварительно подсушивается до влажности 5…6%. Добавка отходов при получении кирпича пластическим способом должна составлять 10…30%. Введение оптимального количества топливо содержащей добавки в результате более равномерного обжига значительно улучшает прочностные показатели изделий (до 30…40%), экономит топливо (до30%), исключает необходимость введения в шихту каменного угля, повышает производительность печей.

Возможно применение шлама углеобогащения сравнительно высокой теплотворной способности (18900…21000кДж/кг) в качестве технологического топлива. Он не требует дополнительного дробления, хорошо распределяется по садке при засыпке через топливные отверстия, что способствует равномерному обжигу изделий, а главное намного дешевле угля.

Из некоторых разновидностей отходов обогащения каменного угля можно производить не только аглопорит, но и керамзит. Ценным источником нерудных материалов являются попутно добываемые породы горнодобывающих отраслей промышленности. Основным направлением утилизации этой группы отходов является производство прежде всего заполнителей бетонов и растворов, дорожно-строительных материалов, бутового камня.

Строительный щебень получают из попутных пород при добыче железной и других руд. Высококачественным сырьем для производства щебня являются безрудные железистые кварциты: роговики, кварцитовые и кристаллические сланцы. Щебень из попутных пород при добычи железной руды получают на дробильно-сортировочных установках, а также сухой магнитной сепарацией.


3. Опыт применения отходов химико-технологических производств и переработки древесины

а) Применение шлаков электротермического производства фосфора

Важным источником строительного сырья являются также сельскохозяйственные отходы растительного происхождения. Ежегодный выход, например, отходов стеблей хлопчатника составляет около 5 млн. т. в год, а льняной костры более 1 млн. т.

Отходы древесины образуются на всех стадиях ее заготовки и переработки. К ним относятся ветви, сучья, вершины, откомплевки, козырьки, опилки, пни, корни, кора и хворост, в сумме составляющие около 21% всей массы древесины. При переработке древесины на пиломатериалы выход продукции достигает 65%, остальная часть образует отходы в виде горбыля (14%), опилок (12%), срезок и мелочи (9%). При изготовлении из пиломатериалов строительных деталей, мебели и других изделий возникают отходы в виде стружки, опилок и отдельных кусков древесины – срезок, составляющих до 40% массы переработанных пиломатериалов.

Наибольшее значение для производства строительных материалов и изделий имеют опилки, стружка и кусковые отходы. Последние используют как непосредственно для изготовления клееных строительных изделий, так и переработки на технологическую щепу, а затем стружку, дробленку, волокнистую массу. Разработана технология получения строительных материалов из коры и одубины – отхода производства дубильных экстрактов.

Фосфорные шлаки - это побочный продукт производства фосфора термическим способом в электропечах. При температуре 1300…1500° С фосфат кальция взаимодействует с углеродом кокса и кремнеземом, в результате чего образуется фосфор и шлаковый расплав. Шлак сливается из печей в огненно-жидком состоянии и гранулируется мокрым способом. На 1 т. фосфора приходится 10…12т шлака. На крупных химических предприятиях получают до двух млн. т. шлака в год. Химический состав фосфорных шлаков близок к составу доменных.

Из фосфорно-шлаковых расплавов можно получать шлаковую пемзу, вату и литые изделия. Шлаковую пемзу получают по обычной технологии без изменения состава фосфорных шлаков. Она имеет объемную насыпную массу 600…800 кг/м³ и стекловидную мелкопористую структуру. Фосфорно-шлаковая вата характеризуется длинными тонкими волокнами и объемной массой 80…200 кг/м³. Фосфорно-шлаковые расплавы могут перерабатывается в литой щебень по траншейной технологии, применяемой на металлургических предприятиях.


б) Материалы на основе гипссодержащих и железистых отходов


Потребность промышленности строительных материалов в гипсовом камне в настоящее время превышает 40 млн.т. В то же время потребность в гипсовом сырье может быть в основном удовлетворенна за счет гипссодержащих отходов химической, пищевой, лесохимической промышленности. В 1980 г. в нашей стране выход отходов и побочных продуктов, содержащих сульфаты кальция, достиг примерно 20 млн. т в год, в том числе фосфогипса – 15,6 млн. т.

Фосфогипс - отходсернокислотной обработки апатитов или фосфоритов в фосфорную кислоту или концентрированные фосфорные удобрения. Он содержит 92…95% двуводного гипса с механической примесью 1…1,5% пятиокиси фосфора и некоторого количества других примесей. Фосфогипс имеет вид шлама влажностью 20…30% с высоким содержанием растворимых примесей. Твердая фаза шлама тонкодисперсная и более чем на 50% состоит из частиц размером менее 10мкм. Стоимость транспортирования и хранения фосфогипса в отвалах составляет до 30% общей стоимости сооружений и эксплуатации основного производства.

При производстве фосфорной кислоты способом экстракции по полугидратной схеме отходом является фосфополугидрат сульфата кальция, содержащий 92…95% - основного компонента высокопрочного гипса. Однако наличие на поверхности кристаллов полугидрата пассивирующих пленок заметно сдерживает проявление вяжущих свойств у этого продукта без специальной его технологической обработке.

При обычной технологии гипсовые вяжущие на основе фосфогипса низкокачественны, что объясняется высокой водопотребностью фосфогипса, обусловленной большой пористостью полугидрата в результате наличия крупных кристаллов в исходном сырье. Если водопотребность обычного строительного гипса 50…70%, то для получения теста нормальной густоты из фосфогипсового вяжущего без дополнительной обработки требуется воды 120…130%. Отрицательно влияют на строительные свойства фосфогипса и содержащиеся в нем примеси. Это влияние несколько снижается при домоле фосфогипса и формирования изделий методом виброукладки. В этом случае качество фосфогипсового вяжущего повышается, хотя и остается ниже, чем строительного гипса из природного сырья.

В МИСИ на основе фосфогипса получено композиционное вяжущее повышенной водостойкости, содержащее 70…90% α-полугидрата, 5…20% портландцемента и 3…10% пуццолановых добавок. При удельной поверхности 3000…4500 см²/г водопотребность вяжущего составляет 35…45%, схватывание начинается через 20…30 мин, кончается через 30…60 мин., предел прочности на сжатие равен 30…35 МПа, коэффициент размягчения 0,6…0,7. водостойкое вяжущее получают при гидротермальной обработке в автоклаве смеси фосфогипса, портландцемента и добавок, содержащих активный кремнезем.

В цементной промышленности Фосфогипс применяют как минерализатор при обжиге клинкера и вместо природного гипса как добавку для регулирования схватывания цемента. Добавка 3…4% в шлам позволяет увеличить коэффициент насыщения клинкера с 0.89…0,9 до 0,94…0,96 без снижения производительности печей, повысить стойкость футеровки в зоне спекания вследствие равномерного образования устойчивой обмазки и получить легко размалываемый клинкер. Установлена пригодность фосфогипса для замены гипса при помоле цементного клинкера.

Широкое применение фосфогипса как добавки в производстве цемента возможно лишь при его подсушке и гранулировании. Влажность гранулированного фосфогипса не должна превышать 10…12%. Сущность основной схемы гранулирования фосфогипса заключается в обезвоживании части исходного фосфогипсового шлама при температуре 220…250° С до состояния растворимого ангидрида с последующим смешиванием его с остальной частью фосфогипса. При смешении фосфоангидрида с фосфогипсом во вращающемся барабане обезвоженный продукт гидратируется за счет свободной влаги исходного материала, и в результате образуются твердые гранулы двуводногофосфогипса. Возможен и другой метод гранулирования фосфогипса – с упрочняющей добавкой пиритных огарков.

Кроме производства вяжущих и изделий на их основе известны и другие пути утилизации гипссодержащих отходов. Опыты показали, что добавкадо 5% фосфогипса в шихту при производстве кирпича интенсифицирует процесс сушки и способствует повышению качества изделий. Объясняется это улучшением керамико-технологических свойств глиняного сырья за счет присутствия основного компонента фосфогипса – двуводного сульфата кальция.

Из железистых отходов наиболее широко применяются пиритные огарки . В частности в производстве портландцементного клинкера их используют как корректирующую добавку. Однако огарки, расходуемые в цементной промышленности, составляют лишь небольшую часть их общего выхода на предприятиях по производству серной кислоты, потребляющих в качестве основного исходного сырья серный колчедан.

Разработана технология изготовления высокожелезистых цементов. Исходными компонентами для получения таких цементов служат мел (60%) и пиритные огарки (40%). Сырьевую смесь обжигают при температуре 1220…1250º С. Высокожелезистые цементы характеризуются нормальными сроками схватывания при введении в сырьевую смесь до 3% гипса. Прочность их на сжатие в условиях водного и воздушно-влажного твердения в течении 28 сут. соответствует маркам 150 и 200, а при пропаривании в автоклавной обработке увеличивается в 2 …2,5 раза. Высокожелезистые цементы являются безусадочными.

Пиритные огарки в производстве искусственных заполнителей бетонов могут служить как добавкой, так и основным сырьем. Добавку пиритных огарков в количестве 2…4% общей массы вводят для увеличения газотворной способности глин при получении керамзита. Этому способствует распад в огарках при 700…800º С остатков пирита с образованием сернистого газа и восстановлением оксидов железа под влиянием органических примесей, присутствующих в глинистом сырье, с выделением газов. Железистые соединения, особенно в закисной форме, действуют как плавни, вызывая разжижение расплава и уменьшение температурного интервала изменения его вязкости.

Железосодержащие добавки применяют в производстве стеновых керамических материалов для снижения температуры обжига, повышения качества и улучшения цветовых характеристик. Положительные результаты дает предварительное прокаливание огарков для разложения примесей сульфидов и сульфатов, образующих при обжиге газообразные продукты, присутствие которых снижает механическую прочность изделий. Эффективно введение в шихту 5…10% огарков, особенно в сырье с низким количеством плавней и недостаточной спекаемостью.

В производстве фасадных плиток полусухим и шлинкерным способами прокаленные огарки могут добавляться в шихты в количестве от 5 до 50% по массе. Использование огарков позволяет выпускать цветные керамические фасадные плитки без дополнительного введения в глину шамота. При этом температура обжига плиток из тугоплавких и огнеупорных глин снижается на 50…100° С.

в) Материалы из отходов лесохимии и переработки древесины


Для производства строительных материалов наиболее ценным сырьем из отходов химической промышленности являются шлаки электротермического производства фосфора, гипссодержащие и известковые отходы.

К отходам зимико-технологических производств можно отнести изношенную резину и вторичное полимерное сырье, а также ряд побочных продуктов предприятий строительных материалов: цементную пыль, осадки в водоочистительных аппаратах асбестоцементных предприятий., бой стекла и керамики. Отходы составляют до 50% всей массы перерабатываемой древесины, большая часть из них в настоящее время сжигается или вывозится в отвал.

Предприятия строительных материалов, расположенные вблизи гидролизных заводов, могут успешно утилизировать лигнин – один из наиболее емких отходов лесохимии. Опыт работы ряда кирпичных заводов позволяет считать лигнин эффективной выгорающей добавкой. Он хорошо смешивается с другими компонентами шихты, не ухудшает ее формировочных свойств и не затрудняет резку бруса. Наибольший эффект его применения имеет место при сравнительно небольшой карьерной влажности глины. Запрессованный в сырец лигнин при сушке не горит. Горючая часть лигнина полностью улетучивается при температуре 350…400º С, зольность его составляет 4…7%. Для обеспечения кондиционной механической прочности обыкновенного глиняного кирпича лигнин следует вводить в формировочную шихту в количестве до 20…25% ее объема.

В производстве цемента лигнин можно использовать как пластификатор сырьевого шлама и интенсификатор измельчения сырьевой смеси и цемента. Дозировка лигнина в этом случае составляет 0,2…0,3%. Разжижающееся действие гидролизного лигнина объясняется присутствием в нем веществ фенольного характера, хорошо снижающих вязкость известняково-глинистых суспензий. Действие лигнина при помоле заключается главным образом в уменьшении слипания мелких фракций материала и их налипании на мелющие тела.

Древесные отходы без предварительной переработки (опилки, стружка) или после измельчения (щепа, дробленка, древесная шерсть) могут служить заполнителями в строительных материалах на основе минеральных и органических вяжущих, эти материалы характеризуются невысокой объемной массой и теплопроводностью, а также хорошей обрабатываемостью. Пропиткой древесных заполнителей минерализаторами и последующим смешиванием с минеральными вяжущими обеспечивается биостойкость и трудносгораемость материалов на их основе. Общие недостатки материалов на древесных заполнителях – высокое водопоглащение и сравнительно низкая водостойкость. По назначению эти материалы делятся на теплоизоляционные и конструктивно-теплоизоляционные.

Главными представителями группы материалов на древесных заполнителях и минеральных вяжущих являются арболит, фибролит и опилкобетоны.

Арболит - легкий бетон на заполнителях растительного происхождения, предварительно обработанных раствором минерализатора. Он применяется в промышленном, гражданском и сельскохозяйственном строительстве в виде панелей и блоков для возведения стен и перегородок, плит перекрытий и покрытий зданий, теплоизоляционных и звукоизоляционных плит. Стоимость зданий из арболита на 20…30% ниже чем из кирпича. Арболитовые конструкции могут эксплуатироваться при относительной влажности воздуха помещений не более 75%. При большой влажности требуется устройство пароизоляционного слоя.

Фибролит в отличие от арболита в качестве заполнителя и одновременно армирующего компонента включает древесную шерсть – стружку длинной от 200 до 500 мм., шириной 4…7 мм. и толщиной 0,25…0,5 мм. Древесную шерсть получают из неделовой древесины хвойных, реже лиственных пород. Фибролит отличается высокой звукопоглащаемостью, легкой обрабатываемостью, гвоздимостью, хорошим сцеплением со штукатурным слоем и бетоном. Технология производства фибролита включает приготовление древесной шерсти, обработки ее минерализатором, смешиванием с цементом, прессование плит и их термическую обработку.

Опилкобетоны – это материал на основе минеральных вяжущих и древесных опилок. К ним относятся ксилолит, ксилобетон и некоторые другие материалы, близкие к ним по составу и технологии.

Ксилолитом называется искусственный строительный материал, полученный в результате твердения смеси магнезиального вяжущего и древесных опилок, затворенной раствором хлорида или сульфата магния. В основном ксилолит применяется для устройства монолитных или сборных покрытий пола. Преимущества ксилолитовых полов – относительно небольшой коэффициент теплоусвоения, гигиеничность, достаточная твердость, низкая истираемость, возможность разнообразной цветной окраски.

Ксилобетоны - разновидность легкого бетона, заполнителем которого служат опилки, а вяжущим – цемент или известь и гипс, ксилобетон при объемной массе 300…700 кг/м³ и прочности на сжатии 0,4…3 МПа применяют как теплоизоляционный, а при объемной массе 700…1200 кг/м³ и прочности на сжатие до 10 МПА – как конструктивно-теплоизоляционный материал.

Клееная древесина относится к наиболее эффективным строительным материалам. Она может быть слоистой или полученной из шпона (фанера, древеснослоистые пластики); массивной из кусковых отходов лесопиления и деревообработке (панели, шиты, брусья, доски) и комбинированной (столярные плиты). Преимущества клееной древесины – низкая объемная масса, водостойкость, возможность получения из маломерного материала изделий сложной формы, крупных конструктивных элементов. В клееных конструкциях ослабляется влияние анизотропности древесины и его пороков, они характеризируется повышенной глиностойкостью и низкой возгораемостью, не подвержены усушке и короблении. Клееные деревянные конструкции по срокам и трудозатратам при возведении зданий, стойкости при возведении агрессивной воздушной среды часто успешно конкурируют со стальными и железобетонными конструкциями. Их применение эффективно при возведении сельскохозяйственных и промышленных предприятий, выставочных и торговых павильонов, спортивных комплексов, зданий и сооружений сборно-разборного типа.

Древесно-стружечные плиты – это материал, полученный горячим прессованием измельченной древесины, смешанной со связующими веществами – синтетическими полимерами. Преимуществами этого материала являются однородность физико-механических свойств в различных направлениях, сравнительно небольшие линейные изменения при переменной влажности, возможность высокой механизации и автоматизации производства.

Строительные материалы на основе некоторых отходов древесины могут изготавливаться без применения специальных вяжущих. Частицы древесины в таких материалах связываются в результате сближения и переплетения волокон, их когезионной способности и физико-химических связей, возникающих в процессе обработки пресс-массы при высоких давлении и температуры.

Без применения специальных связующих получают древесно-волокнистые плиты.

Древесно-волокнистые плиты – материал, формируемый из волокнистой массы с последующей тепловой обработкой. Примерно 90% всех древесно-волокнистых плит изготовляют из древесины. Исходным сырьем служат неделовая древесина и отходы лесопильного и деревообрабатывающего производств. Плиты можно получать из волокон лубяных растений и из другого волокнистого сырья, обладающего достаточной прочностью и гибкостью.

В группу древесных пластиков входят: Древесно-слоистые пластики – материал из листов шпона, пропитанных синтетическим полимером резольного типа и склеенных в результате термической обработки давлением, лигноуглеводные и пьезотермопластики, производимые из древесных опилок высокотемпературной обработкой пресс-массы без ввода специальных вяжущих. Технология лигноуглеводных пластиков состоит из подготовки, сушки и дозировки древесных частиц, формования ковра, холодной его подпрессовке, горячего прессования и охлаждения без снятия давления. Область применения лигноуглеводных пластиков такая же, как древесно-волокнистых и древесно-стружечных плит.

Пьезотермопластики могут изготавливаются из опилок двумя способами – без предварительной обработки и с гидротермальной обработкой исходного сырья. По второму способу кондиционные опилки обрабатываются в автоклавах паром при температуре 170…180º С и давлении 0,8…1 МПа в течении 2 ч. Гидролизованная пресс-масса частично высушивается и при определенной влажности последовательно подвергается холодному и горячему прессованию.

Из пьезотермопластиков выпускают плитки для пола толщиной 12мм. Исходным сырьем могут служить опилки или измельченная древесина хвойных и лиственных пород, льняная или конопляная костра, камыш, гидролизный лигнин, одубина.


г) Утилизация собственных отходов в производстве строительных материалов

Опыт предприятий Крымской автономной республики, разрабатывающих известняк-ракушечник для получения стенового штучного камня, показывает эффективность изготовления из отходов камнепиления ракушечно-бетонных блоков. Блоки формируются в горизонтальных металлических формах с откидными бортами. Дно формы покрывается раствором из ракушечника толщиной 12..15 мм для создания внутреннего фактурного слоя. Форма заполняется крупнопористым или мелкозернистым бетоном из ракушечника. Фактура внешней поверхности блоков может создаваться специальным раствором. Ракушечно-бетонные блоки применяют для кладки фундаментов и стен при строительстве производственных и жилых зданий.

В производстве цемента в результате переработки тонкодисперсных минеральных материалов образуется значительное количество пыли, Общее количество улавливаемой пыли на цементных заводах может составлять до 30% всего объема выпускаемой продукции. До 80% всего количества пыли выбрасывается с газами клинкерообжигательных печей. Пыль, выносимая из печей, является полидесперсным порошком, содержащим при мокром способе производства 40…70, а при сухом – до 80% фракций размером менее 20мкм. Минералогическими исследованиями установлено, что в составе пыли содержится до 20% клинкерных минералов, 2…14% свободной окиси кальция и от 1 до 8% щелочей. Основная масса пыли состоит из смеси обожженной глины и неразложившегося известняка. Состав пыли существенно зависит от типа печей, вида и свойств применяемого сырья, способа улавливания.

Основным направлением утилизации пыли на цементных заводах является использование ее в самом процессе производства цемента. Пыль из пылеосадительных камер возвращается во вращающуюся печь вместе со шламом. Основное же количество свободной окиси кальция, щелочей и серного ангидрида. Добавка 5…15% такой пыли к сырьевому шламу вызывает его коагуляцию и уменьшение текучести. При повышенном содержании в пыли щелочных окислов также снижается качество клинкера.

Асбестоцементные отходы содержат большое количество гидратированных цементных минералов и асбеста. При обжиге в результате обезвоживании гидратных составляющих цемента и асбеста они приобретают вяжущие свойства. Оптимальная температура обжига находится в интервале 600…700º С. В этом температурном диапазоне завершается дегидратация гидросиликатов, разлагается асбест и образуется ряд минералов, способных к гидравлическому твердению. Вяжущие с выраженной активностью можно получить смешиванием термически обработанных асбестоцементных отходов с металлургическим шлаком и гипсом. Из асбестоцементных отходов изготавливают облицовочные плитки и плитки для пола.

Эффективным видом вяжущего в композициях из асбестоцементных отходов является жидкое стекло. Облицовочные плиты из смеси высушенных и измельченных в порошок асбестоцементных отходов и раствора жидкого стекла плотностью 1,1…1,15 кг/см³ получают при удельном давлении прессования 40…50 МПа. В сухом состоянии эти плиты имеют объемную массу 1380…1410 кг/м³, предел прочности на изгиб 6,5…7 МПа, на сжатие 12…16 МПа.

Из отходов асбестоцементного можно изготавливать теплоизоляционные материалы. Изделия в виде плит, сегментов и скорлуп получают из обожженных и измельченных отходов с добавкой извести, песка и газообразователей. Газобетон на основе вяжущих из асбестоцементных отходов имеют прочность на сжатие 1,9…2,4 МПа и объемную массу 370…420 кг/м³. Отходы асбестоцементной промышленности могут служить наполнителями теплых штукатурок, асфальтовых мастик и асфальтовых бетонов, а также заполнителями бетонов с высокой ударной вязкостью.

Стекольные отходы образуются как при производстве стекла, так и при использовании стеклоизделий на строительных объектах и в быту. Возврат стеклобоя в основной технологический процесс производства стекла является основным направлением его утилизации.

Из порошка стекольного боя с газообразователями спеканием при 800…900° получают один из наиболее эффективных теплоизоляционных материалов – пеностекло. Плиты и блоки из пеностекла имеют объемную массу 100…300 кг/м³, теплопроводность 0,09…0,1 Вт и предел прочности на сжатие 0,5…3 МПа.

В смеси с пластичными глинами стекольный бой может служить основным компонентом керамических масс. Изделия из таких масс изготавливают по полусухой технологии, их отличает высокая механическая прочность. Введение стекольного боя в керамическую массу снижает температуру обжига и повышает производительность печей. Выпускают стеклокерамические плитки из шихты, включающей от 10 до 70% боя стекла, измельченного в шаровой мельнице. Массу увлажняют до 5…7%. Плитки прессуют, сушат и обжигают при 750…1000º С. Водопоглащение плиток – не более 6%. морозостойкость более 50 циклов.

Битое стекло также применяют как декоративный материал в цветных штукатурках, молотые стекольные отходы можно использовать как присыпку по масляной краске, абразив – для изготовления наждачной бумаги и как компонент глазури.

В керамическом производстве отходы возникают на различных стадиях технологического процесса, Сушильный брак после необходимого измельчения служит добавкой для снижения влажности исходной шихты. Бой глиняного кирпича используется после дробления как щебень в общестроительных работах и при изготовлении бетона. Кирпичный щебень имеет объемную насыпную массу 800…900 кг/м³ , на нем можно получать бетоны с объемной массой 1800…2000 кг/м³, т.е. на 20% легче, чем на обычных тяжелых заполнителях. Применение кирпичного щебня эффективно для изготовления крупно пористых бетонных блоков с объемной массой до 1400 кг/м³. Количество кирпичного боя резко сократилось благодаря контейнеризации и комплексной механизации работ по погрузке и разгрузке кирпича.


4. Список литературы:


Боженов П.И. Комплексное использование минерального сырья для производства строительных материалов. – Л.-М.: Стройиздат, 1963.


Гладких К.В. Шлаки – не отходы, а ценное сырье. – М.: Стройиздат, 1966.


Попов Л.Н. Строительные материалы из отходов промышленности. – М.: Знание, 1978.


Баженов Ю.М., Шубенкин П.Ф., Дворкин Л.И. Применение промышленных отходов в производстве строительных материалов. – М.: Стройиздат, 1986.


Дворкин Л.И., Пашков И.А. Строительные материалы из отходов промышленности. – К.: Выща школа, 1989.



Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

строительный материал промышленность

На развитие и размещение отраслей промышленности строительных материалов, в общем, оказывают влияние следующие факторы:

  • · природно-климатические условия;
  • · наличие собственной сырьевой базы;
  • · профессиональный уровень занятых в промышленности строительных материалов;
  • · объёмы инвестиций, направляемых на развитие отрасли;
  • · экологический фактор;
  • · научно-технический прогресс (НТП) и степень его внедрения;
  • · наличие в регионе собственной строительной базы и мощностей;
  • · уровень экономического развития и технической оснащённости региона.

Рассмотрим наиболее важные факторы, влияющие на развитие и размещение отраслей промышленности строительных материалов.

Сложившаяся география производства «повторяет», с одной стороны, размещение освоенных источников природного сырья, о чём пойдёт речь далее, с другой - размещение капитального строительства.

Промышленность строительных материалов опирается на весьма распространённую сырьевую базу, границы которой всё долее расширяются под влиянием технического прогресса и вовлечения в оборот новых ресурсов минерально-строительного сырья. При этом, однако, надо учитывать следующие обстоятельства.

Во-первых, обращает на себя внимание сильная дифференциация условий развития производства: разные районы страны отличаются один от другого как по количеству, так и по составу сырьевых ресурсов. Отдельные виды минерально-строительного сырья распространены на территории России далеко не в одинаковой мере. Если, например, кирпичные глины, известковое сырьё или заполнители для бетона встречаются почти повсеместно, то ресурсы цементного сырья более ограничены; ещё меньшим распространением обладают огнеупорные глины, стекольные пески, гипсы и мел, а такой материал, как асбест, представлен лишь единичными месторождениями. В то же время любое минерально-строительное сырьё характеризуется неравномерным размещением. Показательно, что огромная по площади Западно-Сибирская низменность, в разных частях которой ведётся крупное индустриальное строительство, практически лишена сырья для производства цемента и других вяжущих материалов, бутового камня и щебня.

Внутри страны наблюдаются территориальные различия по степени обеспеченности промышленности тем или иным минерально-строительным сырьём. Однако каждый район имеет своеобразное сочетание сырьевых ресурсов, определённый комплекс полезных ископаемых, являясь избыточным по одним видам сырья и дефицитным по другим, что находит отражение в специализации и масштабах производства строительных материалов.

Во-вторых, рост производственной концентрации, сопровождающийся увеличением мощности предприятий, как бы ограничивает круг возможных для вовлечения в эксплуатацию ресурсов, заставляя ориентироваться на соответствующие по размерам все более крупные источники минерально-строительного сырья.

Н размещение промышленности строительных материалов оказывает существенное влияние наличие сырья. Зависимость производства от сырьевых баз объясняется, прежде всего, большим объёмным весом и крайне низкой транспортабельностью минерально-строительного сырья. Так, перевозка песка или гравия автомашинами на расстояние 50 км обходится в 10 раз дороже по сравнению с их добычей. Благодаря относительно легким условиям разработки и высокому содержанию компонентов минерально-строительное сырьё отличается дешевизной и, как правило, не требует предварительного обогащения. Но удельные расходы его на единицу готовой продукции довольно велики. Например, для получения 1 т цементного клинкера надо потратить от 1,5 до 2,5 т известняка и глины, 1 т извести - 2 т известняка, 1 т керамических труб - до 1,5 т глины и т.д. В некоторых случаях помимо количества крайне важную роль играет качество сырья. В частности, цементное производство нуждается в известняках и глинах определённых кондиций (с минимальным содержанием окиси магния в одних и окиси кремния в других). При этом источники известняков и глин должны быть территориально совмещены.

Наконец, то обстоятельство, что сырьё составляет значительную часть себестоимости строительных материалов и что образующиеся при его использовании отходы не утилизируются, лишний раз подтверждает тяготение производства к сырьевым базам.

С другой стороны, размещение промышленности строительных материалов во многом зависит от потребительского фактора. При массовости и повсеместности использования сами по себе строительные материалы обладают сравнительной дешевизной и большим объёмным весом, а вследствие этого низкой транспортабельностью. Многие из них (железобетонные изделия и конструкции, вяжущие материалы, кирпич) даже менее транспортабельны, нежели исходное сырьё. К примеру, затраты по перевозке железобетонных изделий на расстояние 100 км составляют 25-40% их стоимости. Стремление к сокращению транспортных расходов заставляет приближать производство строительных материалов непосредственно к местам потребления, то есть к объектам строительства.

Распространённость сырьевых ресурсов, дешевизна и грузоёмкость сырья и готовой продукции, массовость и повсеместность их использования обусловливают главную экономико-географическую особенность промышленности строительных материалов - одновременное тяготение производства к сырью и потребителю.

По отношению к источникам сырья и местам потребления готовой продукции предприятия промышленности строительных материалов делят на три типа. Одни из них заняты добычей, а также предварительной обработкой сырья и территориально приурочены к определённым природным ресурсам. Другие изготовляют материалы (цемент, гипс, известь и другие), которые затем подвергаются дальнейшей обработке. Эти предприятия включают полный цикл производства - от сырья до готовой продукции - и, как правило связаны с сырьевыми базами. Третий тип - предприятия, выпускающие готовые изделия из материалов, прошедших предварительную обработку. Они подразделяются в свою очередь на предприятия с полным производственным циклом, которые в основном тяготеют к сырью (стекло, кирпич и другие), и на предприятия, работающие на привозных полуфабрикатах, с размещением в местах потребления (бетон, железобетонные изделия и конструкции и другие).

Как отрасль, обслуживающая строительство, промышленность строительных материалов служит звеном любого производственно-территориального комплекса. Разрыв между производством и потреблением строительных материалов приводит к нарушению принципа достижения наивысшей производительности общественного труда при минимальных его затратах. Поэтому комплексное развитие экономических районов страны немыслимо без создания местных баз строительных материалов. Обеспечение строительства необходимыми материалами на месте - момент, ускоряющий развитие производительных сил.

Роль отдельных производств в территориальном разделении труда различна. В этом отношении промышленность строительных материалов представлена двумя группами.

К первой группе принадлежат производства, которые дают сравнительно транспортабельную продукцию, потребляемую в относительно небольших по весу количествах - цемент, гипс, известь, стекло, асбестоцементные изделия и другие. Они пользуются сырьём, которое ограничено в распространении. Предприятий этой группы не так много, но каждое из них обслуживает часто потребителей разных районов.

Вторую группу образуют производства, выпускающие наиболее массовую и нетранспортабельную продукцию - песок, гравий, щебень, стеновые материалы, железобетонные изделия и конструкции и другие. В этой группе насчитывается большое число предприятий, которые используют широко распространённое сырьё и обслуживают в основном местных потребителей.

Также, в зависимости от назначения и характера обслуживания могут проектироваться следующие типы предприятий по производству строительных материалов:

  • · межрайонные (обслуживающие два и более экономических районов) - заводы по производству цемента строительного и технического, стекла строительной керамики, санитарно-технического оборудования и другие;
  • · районные (обслуживающие район в целом или его отдельные части) - заводы по производству железобетонных изделий массового применения, лёгких заполнителей и другие;
  • · местные (обеспечивающие потребности узла сосредоточенного строительства) - полигоны по производству малотранспортабельных, крупногабаритных изделий, передвижные мобильные предприятия и другие;
  • · опорно-тыловые базы - предприятия, обеспечивающие районы нового освоения и расположенные в каком-либо пункте освоенного района.

С точки зрения факторов размещения отраслей промышленности строительных материалов, можно выделить следующие отрасли:

  • · отрасли преимущественно сырьевой ориентации - производство цемента, строительного кирпича и керамической черепицы, производство керамики, керамических труб, асбестоцементных и шиферных изделий, производство стекла, гипса, извести, нерудных строительных материалов (гравий, щебень, и другие.), то есть это отрасли, где велики удельные расходы сырья на единицу готовой продукции
  • · отрасли преимущественно потребительской ориентации - производство бетона, железобетонных изделий и конструкций, мягкой кровли, теплоизоляционных материалов, стеновых материалов и другие, то есть это отрасли, где продукция обладает сравнительной дешевизной и большим объёмным весом, а вследствие этого - низкой транспортабельностью.

В связи с этим, можно выделить особенности, свойственные промышленности строительных материалов:

  • · большая материало-, топливо-, энерго-, грузо- и трудоёмкость выпускаемой продукции;
  • · расположение большинства предприятий в зоне потребления продукции;
  • · широкие межотраслевые и внутриотраслевые связи по кооперации производства;
  • · необходимость удовлетворения потребностей в своей продукции по регионам всей страны.

Однако, особенности промышленности строительных материалов, приведённые выше отличаются от особенностей строительного комплекса.

Особенности строительного комплекса:

  • · наличие собственной материально-технической базы;
  • · целевая направленность на обеспечение целостности комплекса, кооперирования и специализации труда;
  • · комплексность и сбалансированность развития;
  • · маневренность отдельных звеньев от характера строительной продукции;
  • · обособление отраслей внутри строительного комплекса и усиление взаимозависимости.

Научной основой развития и размещения производства строительных материалов и конструкций по регионам страны служат региональные комплексные программы НТП, то есть отраслевые схемы развития материально-технической базы строительства. Перечень строительных материалов, включаемых в комплексные программы таков:

  • · сборные железобетонные и бетонные изделия;
  • · детали крупнопанельного и объёмноблочного домостроения;
  • · стальные конструкции, конструкции и изделия из алюминия и алюминиевых сплавов;
  • · деревянные конструкции и столярные изделия;
  • · асбестоцементные конструкции и изделия;
  • · стеновые блоки и строительный кирпич;
  • · нерудные материалы и пористые заполнители;
  • · известь, гипс, сухая гипсовая штукатурка и другие местные вяжущие материалы;
  • · теплоизоляционные материалы;
  • · монтажные заготовки, узлы и детали;
  • · товарный бетон, строительный раствор, асфальтобетон;
  • · товарная арматура, закладные детали

Программы работ в области строительства требуют для своего осуществления, наряду с дальнейшим развитием промышленности строительных материалов, изыскание новых резервов повышения эффективности их производства. В современном строительстве резко возрастает потребность в высокопрочных строительных материалах, которые обладают развитой сырьевой базой и изготавливаются прогрессивными технологическими методами.

В технологии строительных материалов известны работы, в которых показана техническая возможность и экономическая целесообразность производства безцементных вяжущих. Минеральным сырьем для производства являются многотоннажные отходы металлургической, теплоэнергетической, горнодобывающей, химической и других отраслей промышленности.

На основании этих вяжущих можно изготавливать различные строительные материалы, такие, как: сухие строительные смеси, бетонные блоки и плиты, бетоны для монолитного строительства, кирпич, тротуарную плитку и т.д.

Экспериментальное внедрение безцементных вяжущих в строительстве начато в 1958 году, а производство - в 1964 году. За это время доказаны высокие технологические и эксплуатационные свойства таких строительных материалов, прошедших проверку временем в конструкциях различных областей строительства. Например, в 1989 году в городе Липецке был построен 22-этажный дом.

Разработка строительных материалов на основе комплексного использования крупнотоннажных отходов промышленности обусловлено, прежде всего, эколого-экономическими факторами. Во-первых, значительным ростом цен на цементы, природные заполнители, энергоносители и, во-вторых, обострением экологической обстановки в стране в результате продолжающего наращивания, образования и накопления промышленных отходов.

Минимизации экологических последствий от промышленных отходов можно достичь только полной их утилизацией. Поэтому многие развитые страны пошли по пути использования в качестве минерального сырья не природных, а техногенных материалов и изготовления из них принципиально новых видов высококачественной продукции. Россия, в этом плане, значительно уступает. Так, например, золошлаковые отходы ТЭС используются только на 8 %, сталелитейные и ферросплавные шлаки на 50 %, ультрадисперсный кремнезем, представляющий отход при производстве кремнесодержащих сплавов, на 10%, отходы горнодобывающей промышленности на 27 %. Исследования показывают, что широкое применение промышленных отходов позволило бы на 15-20 % расширить минерально-сырьевую базу строительной промышленности.

Химический и минералогический состав перечисленных отходов, в большинстве своем, прекрасно подходит для производства безцементных вяжущих. К тому же, отличительной их особенностью является способность к химической активации веществами, которые в свою очередь также могут быть отходами других производств.

Промышленные отходы необходимо рассматривать не как традиционные индустриальные свалки, а как стабильную и возобновляемую сырьевую базу для производства высококачественных дешевых строительных материалов.

Особенности технологии строительных материалов заключаются в следующем:

  • -применение промышленных отходов;
  • - использование химических активаторов твердения из местных отходов;
  • -простая гидротермальная обработка при атмосферном давлении;
  • -технология позволяет производить объемноокрашенные стройматериалы.

Основные этапы и направления развития промышленности строительных материалов. В Российской Федерации за последние несколько лет удалось добиться постоянного роста объема промышленной продукции, но, хотя ежегодный прирост выпуска продукции строительных материалов составлял в среднем около 10%, достигнутые объемы не полностью удовлетворяют потребности современного строительства, что вызвано, в основном, низким техническим уровнем предприятий и износом технологического оборудования.

Производство отдельных видов строительных материалов характеризуется высокой капиталоемкостью производственных мощностей и требует значительного времени на строительство, что снижает их инвестиционную привлекательность.

В базовой для строительства отрасли - цементной промышленности объем инвестиций на 1 тонну цемента возрастет от 5-6 долларов на тонну мощности в год при поддержании и ремонте существующих мощностей до 250-300 долларов на тонну при строительстве новых заводов.

Степень износа технологического оборудования цементной промышленности составляет 70%. Вследствие этого, мощность 45-ти действующих цементных заводов официально оценивается в 71,2 млн. тонн, но фактически - по независимым оценкам - заводы в их нынешнем состоянии могут произвести максимум 65 млн. тонн цемента в год.

Чтобы обеспечить строительный комплекс цементом, достаточным для ввода 80 млн.кв.м. жилья в год, промышленность должна выйти в 2010 г. на уровень 90 млн. тонн цемента в год, что потребует ввода дополнительных производственных мощностей. Крупные единовременные капиталовложения суммарно по отрасли оцениваются в 5.1 - 6.3 млрд. долларов.

Производство теплоизоляционных материалов. В настоящее время отечественной промышленностью производится около 9,0 млн. куб. м теплоизоляционных изделий всех видов.

Основным видом производимых в России утеплителей являются минераловатные изделия, доля которых в общем объеме производства составляет более 65%. Около 8% приходится на стекловатные материалы, 20% - на пенопласты, 3% - на ячеистые бетоны.

Потребность в утеплителях резко возросла после введения новых требований к теплопотерям ограждающих конструкций зданий. Общая потребность в утеплителях для всех отраслей хозяйства страны по расчетам составит к 2010 году до 50-55 млн. м3 , в том числе для жилищного строительства - 18-20 млн. м3 .

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://allbest.ru

Природные строительные материалы и сырьё для их производства

Общая характеристика природных строительных материалов, их технологические свойства, области применения, промышленно-генетические типы месторождений, ресурсная база.

Группа природных строительных материалов включает в себя пески и песчаники, песчано-гравийные смеси, глины, карбонатные породы, гипсы и ангидриты, строительные камни.

1. Пески, песчаники и песчано-гравийные смеси

Пески - мелкообломочные горные породы моно- или полиминерального состава с размерами частиц 0,1 -1,0 мм. Песчаники- это сцементированные пески, цемент может быть кварцевым, карбонатным, железистым, глинистым др. Гравий - обломочный материал с размерами обломков 1-10мм. Песчано-гравийные смеси содержат не менее 10% гравийных фракций и не менее 5% песчаных.

Основные промышленно-генетические типы месторождений.

1. Аллювиальный: древний - погребенных долин и террас (Киятское - Татарстан, Березовское - Красноярский край); современный - пойменные и русловые (Бурцевское - Нижнегородская обл., Усть-Камское - Татарстан);

2. Морской и озерный червертичного возраста (Егановское, Люберецкое - Московская обл.; Сестрорецкое - Ленинградская обл.).

3. Флювиогляциальные (Струги - Красные - Псковская обл.) 4.Эоловый - дюны и барханы (Сосновское - Чувашия; Матакинское - Татарстан);

Применение песков и гравия в народном хозяйстве основывается на различных физических свойствах этих обломочных пород. Более 96% добываемых песка и гравия потребляется в строительстве, менее 5% приходится на долю особо чистых кварцевых песков, используемых в стекольной, керамической, металлургической промышленности, а также в производстве ферросилиция, карбида кремния и т. п.

Важнейшее значение для стекольных, керамических, формовочных и прочих чистых кварцевых песков имеет химический состав. Содержание кремнезёма в них должно превышать 90%.. Высокое содержание кремнезема -- необходимое условие и для песков, используемых в производстве ферросилиция, карбида кремния, жидкого стекла и т. д., а также для абразивных и фильтровальных песков, для формовочных песков, используемых в литейном производстве, для производства силикатного кирпича.

Более 60% месторождений кварцевых песков расположено в Европейской части России.Эксплуатируются крупные месторождения Егановское и Люберецкое в Московской, Ташлинское в Ульяновской, Балашейское в Самарской, Миллеровское в Ростовской, Тулунское в Иркутской областях и др.

Производят кварцевое сырье, кроме стран СНГ, Австрия, Бельгия, Саудовская Аравия, Австралия, импортируют -- ФРГ, Швеция, Япония.

Мировое потребление кварцевых песков составляет порядка 100-120 млн в год. На долю стран СНГ приходится (млн т) около 36, США -- 28, ФРГ -- 10-14, Франции ~6, Англии -4, Бельгии и Бразилии -- по 3-4, Австрии и Австралии -- по 2.

В России в 1996 г. добыто стекольных и формовочных песков более 6 млн т, в том числе около 1,5 млн т стекольных. В других странах СНГ объем добычи тех же песков составил около 60% от российской добычи.

Полимиктовые строительные пески и песчано-гравийные смеси связаны в основном с ледниковыми отложениями в Центральной и Северо-Западной части России, а также на равнинах юга Европейской части, в Западной и Восточной Сибири, на Дальнем Востоке, где широко развиты аллювиальные, эоловые и морские отложения.

Месторождения песчано-гравийного сырья имеют широкое, хотя и не повсеместное распространение. В России учтено 1269 месторождений с запасами по сумме промышленных категорий почти 10 млрд м. Разрабатывают около 600 месторождений с годовой добычей 130-190 млн м 3 .

В северном регионе европейской части России запасы сырья составляют 32% от общероссийских, добыча 36%. На Северо-Кавказский регион приходится около 15% запасов и добычи сырья. В Уральском регионе сосредоточено 17% запасов, добыча составляет 32%. Всего в европейской части России добывают более 80% сырья.

Песчаники - это уплотненные сцементированные, метаморфизованные пески, прочностные свойства которых зависят от состава цемента и характера цементации. В состав цемента могут входить глинистые минералы, карбонаты, кремнезём, окислы железа, фосфаты и т.д.

Применяются в строительном деле в качестве стенового камня, бута, щебня и брусчатки, для получения точильных камней.

Генезис песчаников осадочный, (Черемшанское месторождение в Бурятии, Шокшинское - в Карелии, в Донбассе).

Глины - это тонкодисперсные горные породы, состоящие преимущественно из слоистых алюмосиликатов и обладающие пластичностью. В зависимости от преобладания какого-либо компонента глины подразделяются на аллофановые, каолинитовые, монтмориллонитовые, гидрослюдистые, палыгорскитовые.

Особенности вещественного состава предопределяют важнейшие технологические свойства глин:

1. Пластичность- способность при смешивании с ограниченным количеством воды давать тесто, принимающее под давлением любую форму и сохраняющее её при сушке. Пластичность обусловлена минеральным составом, степенью дисперсности и свойственна монтмориллонитовым глинам, меньшая - каолинитовым.

2. Набухание - свойство глин увеличиваться в объеме при поглощении воды. Наибольшим набуханием обладают монтмориллонитовые, наименьшим - каолинитовые.

3. Усадка - уменьшение объема при высыхании.

4. Спекаемость - способность при обжиге спекаться в камнеподобное твердое тело - черепок.

5. Огнеупорность - способность черепка выдерживать высокие температуры без размягчения и плавления. Глины делятся на огнеупорные, тугоплавкие и легкоплавкие, Наиболее огнеупорны- каолины, легкоплавкие - монтмориллонитовые и бейделлитовые глины.

6. Вспучивание при обжиге - увеличение объема и уменьшение плотности глинистого материала.

7. Адсорбционные (поглотительные) свойства - способность поглощать и удерживать на своей поверхности ионы и молекулы различных веществ.

8. Водоупорность

9. Относительная химическая инертность.

Выделяется 4 наиболее важные промышленные группы:

К строительным и грубокерамическим относятся легкоплавкие, в меньшей степени тугоплавкие глины. Применяются в обожженном виде для производства строительной (кирпич, черепица) и грубой керамики: клинкерного кирпича, дренажных труб, метлахской плитки, глиняной посуды, при ускоренном обжиге - для получения керамзита и аглопорита. В необожжённом виде -как строительный, связующий, водонепроницаемый (при возведении плотин) материал.

Огнеупорные и тугоплавкие глины применяются для внутренней облицовки доменных печей, для производства кислотоупорных изделий, тонкой керамики, как формовочный материал в литейном деле.

Каолины и каолинитовые глины относятся к высокоогнеупорным и используются для производства тонкой керамики. Это фарфоровые и фаянсовые изделия, предметы санитарно-технического и медицинского оборудования, бытовая и химическая посуда. В качестве наполнителя - в бумажной, химической, стекольной, парфюмерной промышленности.

Бентониты - тонкодисперсные глины с высокой связующей способностью, адсорбционной и каталитической активностью. Они применяются для изготовления промывочных жидкостей (в т.ч. буровых растворов), производства железорудных окатышей, получения керамзита, в качестве адсорбентов в нефтеперерабатывающей, пищевой (очистка вин, соков), текстильной промышленности, в сельском хозяйстве.

1. Остаточные месторождения кор выветривания: каолинитовые, бентонитовые, гидрослюдистые (Урал, Украина).

2. Осадочные - морские, лагунные, озёрные и речные (Борщевское - Россия, Черкасское - Украина), ледниковые (Псковская, Новгородская, Ленинградская области), эоловые (юг России и Украины).

3. Вулканогенно-осадочные- в водных бассейнах образуются бентониты (Гумбри- Грузия, Огланлинское - Туркмения).

4. Гидротермальные - бентониты, каолины (Сарыгюхское - Армения, Асканское - Грузия, Гусевское - Приморье Россия).

5. Метаморфизованный тип месторождений - аргиллиты (Биклянское - Россия, Черкасское - Украина).

Мировые разведанные ресурсы бентонитовых глин оцениваются в 2000млн.т., в т.ч. в США -800 млн.т. Мировая добыча в 2000 году составила 9,3 млн.т., из них на долю США приходится 3,8 млн.т., Греции- 0,95 млн. т., Германии, Турции, Италии -по 0,5 млн.т. В России произведено всего 0,37млн.т., что не обеспечивает внутренних потребностей, и означает полную зависимость от импорта, особенно в щелочных бентонитах. Около 70% запасов высококачественных бентонитов бывшего СССР остались за пределами России (на Кавказе и в Средгей Азии).

Мировая добыча каолина в 2000 году составила 39,8 млн.т.,из них в США- 9,45 млн.т.,Чехии -2,9 млн.т., Великобретании -2,3млн.т., Ю.Корее -2,2 млн.т.В России - 0,04млн.т., этого крайне недостаточно и Россия зависит от импорта, в частности с Украины и Казахстана.

3.Карбонатные породы

строительный карбонатный порода камень

Карбонатные породы составляют около 20% осадочных отложений земной коры и представлены следующими разновидностями.

Известняки - осадочные породы, состоящие в основном из кальцита (СаСО 3) с примесью доломита (Ca, Mg(CO 3) 2), песчаных и глинистых частиц. При содержании доломита 20-50% -доломитовый известняк.

Известняки-ракушечники состоят из обломков раковин, сцементированных карбонатным или глинисто-карбонатным цементом - легкие пористые породы.

Мел - порода состоящая на 60-70% из мельчайших остатков скелетных образований планктонных организмов и на 30-40% из тонкозернистого порошкообразного кальцита.

Мергели - тонкозернистые осадочные горные породы, переходные от известняков и доломитов к глинистым породам и содержащие 50-70% кальцита или доломита или их смесь и 20-50% глинисто-песчаного материала.

Доломиты - карбонатные осадочные породы, состоящие (не менее чем на 90%) из минерала доломита (Са, Мg (СО 3) 2).

Мраморы и мраморизованные известняки - карбонатные породы, претерпевшие перекристаллизацию в результате регионального или контактового метаморфизма.

Основные отрасли и объемы потребления карбонатных пород следующие (в %): производство строительного и облицовочного камня -- 60, цементная промышленность -- 20, металлургическая-- 10, известковая -- 5, огнеупорная -- 2, сельское хозяйство-- 1, остальные -- 2.

Для производства строительных и облицовочных камней используются известняки, доломиты, мраморы, отличающиеся декоративностью и хорошей полируемостью, высокими физико-механическими свойствами -- твердостью, прочностью. Из карбонатных пород получают бутовый камень, щебень, крошку, штучные и облицовочные камни. Только на нужды гражданского, промышленного и дорожного строительства ежегодно расходуется около 220 млн. т карбонатных пород.

В цементной промышленности широко используются известняки, мел, мергели или их смеси с определенными соотношениями AI2O3, Si0 2 , Fe 2 0 3 и СаО. Кондиционными считаются маломагнезиальные карбонатные породы, содержащие не менее 40 % СаО и не более 3,5 % MgO.

Из карбонатных пород изготавливают портландцементы, глиноземистый цемент и многие другие виды вяжущих веществ. Сырьем для производства портландцемента служат различные карбонатные породы, среди которых преобладающую роль играют известняки, мел и мергели. Особую ценность имеют мергели-натуралы. Портландцементы применяются для изготовления бетонов.

В металлургической промышленности чистые карбонатные породы служат главным образом флюсами. Они переводят в шлак пустые породы и вредные примеси.. Значительное количество доломитов используется как сырье для получения магния и огнеупорного материала в металлургии.

Известковая промышленность для производства гидравлической, воздушной, медленногасящейся и других видов строительной извести потребляет в основном известняки и мел.

Чистые известняки применяются в химической промышленности для производства соды, карбида кальция, едких калия и натрия, хлора и др. В пищевой- используются для очистки сахара. В сельском хозяйстве используются мягкие известняки и мел для известкования подзолистых почв. Значительное количество карбонатного сырья применяется в стекольной, бумажной, лакокрасочной, резиновой и других отраслях промышленности.

Промышленно-генетические типы месторождений:

1. Осадочные - морские представлены известняками доломитами, мергелями и мелом. По условиям образования различаются биогенные, хемогенные и смешанные. Промышленные месторождения известняков - на значительной части Восточно-Европейской и Сибирской платформ, на Урале, в Кузбассе, на Алтае, Красноярском крае, на Кавказе, в Ростовской области (Жирновское месторождение); доломитов - на Урале (Сухоререченское) в Енисейском кряже, хребте Малый Хинган; мела - Вольская группа (Саратовская обл.); мергелей - Новороссийская группа месторождений;

2. Метаморфизованные - мраморы и мраморизованные известняки (Белогорское в Карелии; Кибик -Кордонское в Саянах).

Мировое потребление карбонатного сырья более 5млрд.т. в год. Наиболее крупными потребителями являются США, Россия, Япония.

Ресурсы карбонатных пород России огромны, Распределены они на территории крайне неравномерно. Около 50% запасов сосредоточено в европейской части.Наименее обеспеченные районы - Карелия и Мурманская область, а также Тюменская, Омская, Камчатская и Калининградская области.

4. Гипс (CaSO 4 2H 2 O) и ангидрит (CaSO 4)

Гипс и ангидрит наиболее распространены среди соленосных образований и сходны между собой. Гипс представляет собой слоистую или массивную породу зернистого строения белого цвета. Кристаллы гипса прозрачны, зернистые агрегаты окрашены примесями в разные цвета; тонкозернистый просвечивающий агрегат - алебастр; тонковолокнистый - селенит. Невысокая твердость, легко поддаётся обработке.

При прокаливании гипс теряет кристаллизационную воду. При t = 100-180 ° С переходят в полугидрат (CaSO 4 · 0,5H 2 O); при t = 200-220 ° С - искусственный ангидрит, растворимый в воде; при t = 800-1000 ° С - эстрих-гипс, при t = 1600 ° С - в жженую известь СаО.

Ангидрит от гипса отличается большими плотностью и прочностью и обладает значительно худшими вяжущими свойствами.

Основное свойство гипса, определяющее его промышленное использование, это способность терять при нагревании кристаллизационную воду и давать при затворении водой пластичную массу, постепенно твердеющую на воздухе и превращающуюся в прочный искусственный камень.

Из гипсовых вяжущих наиболее широко применяется строительный гипс для штукатурных и отделочных работ, изготовления строительных конструкций. Для получения строительного гипса природный гипс дробят и размалывают, а затем обжигают во вращающихся или шахтных печах при 130--180°С в течение 1,5--2 часов. При обработке природного гипса насыщенным паром под давлением получают высокопрочный полуводный гипс -- вяжущее вещество с малыми сроками схватывания и твердения, обладающее повышенной механической прочностью используемое как формовочный и медицинский гипс. Первый употребляется для изготовления рабочих форм в фарфоро-фаянсовом и керамическом производстве, для литья металлов и сплавов, выполнения различных скульптурных работ; второй применяется в хирургии и зубоврачебном деле. Эстрих-гипс медленно соединяется с водой и становится вяжущим веществом, применяемым для изготовления плиточных и бесшовных полов, строительных растворов, подоконников и ступеней, искусственного мрамора и др. Гипс широко используется при производстве различных цементов. Гипсошлаковый цемент. успешно применяется при строительстве подземных и подводных сооружений, подвергающихся действию выщелачивания и сульфатной агрессии.

При производстве гипсовых вяжущих веществ и в качестве добавок к цементам потребляется более 90 % всего добываемого гипса и ангидрита. В небольшом количестве гипс и ангидрит используется в качестве облицовочного и поделочного камня, флюса при плавке окисленных никелевых руд, в химической промышленности, сельском хозяйстве и при изготовлении бумаги.

Образуются гипс и ангидрит в осолонённых бассейнах на начальных стадиях осаждения солей.

Промышленно-генетические типы месторождений:

1. Осадочные: сингенетические - осаждение из растворов (Новомосковское в Тульской обл., Псковской обл., Каменомостское - Северный Кавказ - Россия, Приднестровские месторождения - Украина); эпигенетические - при гидратации ангидрита (Заларинское в Иркутской обл., в Донбассе, Звозское в Архангельской обл.);

2. «Гипсовые шляпы» - остаточные продукты растворения каменной соли (Бриневское месторождение - Белоруссия):

3. Инфильтрационные - при растворении и переотложении рассеянного в породах гипса (Северный Кавказ, Средняя Азия, Казахстан).

В мире разведаны большие запасы гипса -- порядка 7 млрд т, в том числе в Европе более 5, в США -- около 1, Канаде -- 0,5 млрд т.

Ведущими экспортерами гипса и ангидрита являются Канада, Таиланд, Испания. Основные импортеры -- США и Япония.

Разведанные запасы гипса, ангидрита и гипсоносных пород имеются во всех странах СНГ за исключением Беларуси; 75% запасов сосредоточены в России,.

Запасы гипса и ангидрита в России размещены неравномерно: 95% их находится в европейской части и лишь 5% -- в азиатской. Большая часть гипсового сырья России (58%) находится в Центральном районе, где расположены крупнейшие из разведанных и разрабатываемых месторождений.

Из общей добычи гипсоангидритовых пород в странах СНГ 59% приходится на Россию,

5. Природные строительные и отделочные камни

Строительные камни представляют обширную группу нерудных полезных ископаемых, занимающих по объемам потребления одно из первых мест в строительном производстве. Являясь инертными материалами, они включают пильные (стеновые) и облицовочные камни и наряду с песками и песчано-гравийными смесями составляют главный комплекс природных строительных материалов, используемых в естественном состоянии без применения термохимической обработки.

Природными строительными камнями являются магматические, метаморфические и осадочные горные породы различного состава В большинстве случаев минеральный состав горных пород не имеет существенного значения, определяющими являются физико-механические свойства пород. В наибольших количествах используются карбонатные породы, граниты и сходные с ними горные породы. Реже используют габброиды, базальтоиды, песчаники.

Инертные строительные материалы, получаемые при переработке строительных камней используют в качестве заполнителей тяжелых бетонов.

Применение в качестве строительных камней зависит от их физических и технологических свойств. Наиболее важными являются прочность и долговечность, зависящие от минерального состава породы, структурно-текстурных особенностей, трещиноватости, пористости и др. Наиболее стойкими породами являются: кварциты, граниты, сиениты, диориты. Карбонатные породы - известняки, доломиты и мраморы, несмотря на относительно невысокое сопротивление истиранию, характеризуются прочностью на сжатие и применяются для внутренней и наружной отделки зданий. Мелкозернистые породы обычно более прочны, чем крупнозернистые. Для оценки пригодности породы в качестве строительного камня проводится комплекс специальных лабораторных испытаний, включающий определение объемной массы, плотности, пористости, водопоглощения, морозоустойчивости, прочности на сжатие, растяжение, изгиб, абразивной истираемости, вязкости и др. В зависимости от применения дополнительно изучают обрабатываемость, вязкость, огнеупорность, полируемость, устойчивость окраски и др.

Строительные камни применяются в следующем виде:

Бутовый камень (бут)- камень неправильной формы размером 140 мм, используется для кладки фундаментов, при возведении массивных сооружений (плотин, дамб и др.).

Штучные камни - изделия правильной геометрической формы с обработанными поверхностями, используются как бордюрные камни, брусчатка для дорожных покрытий, архитектурно-отделочные детали, ступени, цокольные и облицовочные изделия, валы и жернова - промышленные изделия.

Пильные камни - блоки стандартного размера вырезаются дисковыми фрезами непосредственно в массиве горной породы и используются в качестве стенового материала.

Щебень -наиболее массовый продукт, используемый в качестве заполнителя бетона и асфальто-бетона, для отсыпки железнодорожных путей и автомобильных дорог.

Природные облицовочные камни представляют специфическую группу строительных материалов, промышленная ценность которых определяется прежде всего их декоративными свойствами. Наряду с этим важным свойством облицовочных камней является механическая прочность, способность принимать различные виды обработки поверхности и сопротивляемость атмосферным воздействиям -- погодоустойчивость.

В качестве облицовочных камней используются горные породы различного происхождения: интрузивные -- граниты, сиениты, диориты, габбро-нориты, лабрадориты; эффузивные -- базальты, диабазы, андезиты, порфиры, порфириты, вулканические туфы; метаморфические -- мраморы, кварциты; осадочные -- известняки, доломиты, травертины, гипсы, песчаники, конгломераты и брекчии. Наиболее широко используются граниты и мраморы.

В России крупным районом добычи магматических и метаморфических пород высокого качества является Балтийский щит (Кольский полуостров, Карелия): граниты разных расцветок и рисунков используемые в качестве облицовочного и монументального камня. Другим крупным районом является Урал: граниты, габбро, яшмы, мраморы. Многочисленные месторождения магматических и метаморфических пород известны на Алтае, Саянах, Забайкалье, Приморском крае (граниты, базальты, габбро-диабазы, туфы). Значительными запасами различных строительных камней обладают также Украина, Казахстан, Армения.

Европейская часть и Западная Сибирь располагают многочисленными месторождениями осадочных карбонатных пород, песчаников, конгломератов

На территории России учтено более 1000 месторождений строительных камней с запасами по промышленным категориям порядка 20 млрд м 3. . Разрабатывается более 500 месторождений. Ежегодно добывают около 100 млн м 3 строительных камней.

Запасы пильных известняков в России составляют примерно 110 млн м 3 . В год их добывают более 100 тыс. м 3 .

Ведущей страной мира в области производства и применения облицовочных материалов и изделий является Италия, которая значительную часть мрамора экспортирует в разные страны. Месторождения редких сортов мраморов находятся в Бельгии и Франции. Высокодекоративный гранит добывается в Швеции, Испании, Бразилии.

В России учтено 146 месторождений облицовочных камней с запасами по промышленным категориям 536 млн м. Из них разрабатывается около 40 месторождений с годовым объемом добычи 500-600 тыс.м 3 . В остальных странах СНГ учтено около 300 месторождений с запасами около 900 млн м 3 . На 165 разрабатываемых месторождениях добывают 3,5 млн м облицовочных камней ежегодно.

Литература

1.Агафонов Г.В., Волкова Е.Д. и др. «Топливно-энергетический комплекс России: Современные состояние и взгляд в будущее». Новосибирск, Наука, Сибирская издательская фирма РАН, 1999 г., 312стр.

2.Ерёмин Н.И. Неметаллические полезные ископаемые: Учебник - М.Изд-во МГУ. 1991.-284 с.

3. Карякин А.Е., Строна П.А. и др. Промышленные типы месторождений неметаллических полезных ископаемых. М. Недра. 1985.

4. Татаринов И. К., Карякин А.Е. и др. Курс месторождений твердых полезных ископаемых Л. Недра, 1975.

5.Яковлев П.Д. Промышленные типы рудных месторождений. М. «Недра», 1986. Учебное пособие. 358с.

Дополнительная

1 Ваганов В.И., Варламов В.А. Алмазы России: минерально-сырьевая база, проблемы, перспективы.// Минеральные ресурсы России. Экономика и управление - 1995- № 1.

2. Байбаков Н.К., Праведников Н.К., Старосельский В.И. и др. Вчера, сегодня и завтра нефтяной и газовой промышленности России. -М.: Изд-во ИГиРГИ, 1995.

3. Беневольский Б.И., Сырьевая база золота России на пути развития-проблемы и перспективы. Минеральные ресурсы России, журнал, 2006г.,№2, с.8-16.

4. Бутова М.Н., Зубцов И.Б. Проблемы развития сырьевой базы и производства индия // Минеральные ресурсы России. -- 199 с.

5. Гольд Г.С. Минерально-сырьевые ресурсы: Социальный вызов времени. -М.: Профсоюзы и экономика, 2001.-407 с.

6. Дворников В.А. Экономическая безопасность. Теория и реальность угроз. -- М.: Недра, 2000.

7. Зайденварг В.Е., Новитный A.M., Твердохлебов В.Ф. Уголь¬ная сырьевая база России: состояние и перспективы развития // Уголь. -- 1999. -- № 9.

8. Кавчик Б.К. Добыча россыпного золота в ХХI в.. Минеральные ресурсы России, журнал,2007г.,№2, с.43-49.

9. Козловский Е.А. Минерально-сырьевые проблемы России накануне ХХI века, М., МГГУ, 1999 г., 402 с.

10. КозловскийЕ.А. Россия: минерально-сырьевая политика и национальная безопасность.- М. Изд-во МГГУ 2002. 856 с.

11. Козловский Е.А., Щадов М.И. Минерально-сырьевые проблемы национальной безопасности России. -- М.: Изд-во МГГУ, 1997.

12. Кочетков А.Я. ,Кузьмин А.В., Василивецкий А.А., Иностранные золотодобывающие компании в России. Минеральные ресурсы России, журнал, 2007г.,№2, с.50-57.

13. Кочетков А.Я. Смена лидера среди золотодобывающих регионов России, Минеральные ресурсы России, журнал,2004г.,№4, с.65-71.

14. Кривцов A.И, Беневольский Б.Л., Минаков В.М. На¬циональная минерально-сырьевая безопасность (введение в про¬блему). -- М.: ЦНИГРИ, 2000.

15. Кривцов А.И. Минерально-сырьевая база на рубеже веков - ретроспектива и прогнозы. Изд. 2-е, дополненное. - М.: ЗАО "Геоинформмарк". 1999. - 144 с.

16. Кузьмин А.В. Российская золотодобывающая промышленность-процессы консолидации. Минеральные ресурсы России, журнал,2004г.,№4, с.58-64.

17. Лаверов Н.П., Конторович А.Э. Топливно-энергетические ресурсы и выход России из кризиса. Ж. Экономические стратегии.- 1999. №2.

18. Лаверов Н.П., Трубецкой К.И. Горные науки в системе наук о Земле // Вестник РАН. Т. 66. -- 1996. -- № 5.

19. Лазарев В.Н О воспроизводстве ми¬нерально-сырьевой базы цветных и леги¬рующих металлов // Минеральные ресурсы России. Экономика и управление. - 2001. -№ 3. - С. 52-60

20. Лазарев В.Н. О долгосрочном прогнозе развития сырьевой базы меди. №2, Минеральные ресурсы России. 2007г. с.6-12

21. Машковцев Г.А. Запасы и производство урана: состояние и перспективы // Руды и металлы. --2001. --№ 1. 256

22.Мельников Н.Н., Бусырев В.Н. Концепция ресурсосбалансированного освоения минерально-сырьевой базы. //Минеральные ресурсы России. Экономика и управление - 2005-№ 2 -с.58-63.

23. Минеральные ресурсы мира. - М.: ИАЦ "Минерал", 2004.

24. Минеральные ресурсы мира. Хроника текущих событий.// МПР России. ИАЦ «Минерал» - М., 2002

Размещено на Allbest.ru

...

Подобные документы

    Строительные камни - обширная группа нерудных полезных ископаемых, их применение в строительном производстве. Основные виды строительных камней. Долговечность горных пород. Генетические типы промышленных месторождений. Природные облицовочные камни.

    реферат , добавлен 13.07.2014

    Общие сведения о строительных материалах, их основные свойства и классификация. Классификация и основные виды природных каменных материалов. Минеральные вяжущие вещества. Стекло и стеклянные изделия. Технологическая схема производства керамической плитки.

    реферат , добавлен 07.09.2011

    Свойства, состав, технология производства базальта. Устройство для выработки непрерывного волокна из термопластичного материала. Описание и формула изобретения, характеристика продукции. Виды строительных материалов. Применение базальта в строительстве.

    реферат , добавлен 20.09.2013

    Свойства дорожно-строительных материалов. Способы формования керамических изделий. Природные каменные материалы. Сырье, свойства и применение низкообжигового строительного гипса. Основные процессы, необходимые для получения портландцементного клинкера.

    контрольная работа , добавлен 18.05.2010

    Виды санитарно-технической керамики. Сырьё, технология ее изготовления. История возникновения и производства стекла. Свойства акустических материалов и применение их в строительстве. Основные свойства строительных растворов. Физические свойства древесины.

    контрольная работа , добавлен 12.09.2012

    Свойства строительных материалов, области их применения. Искусство изготовления изделий из глины. Классификация керамических материалов и изделий. Цокольные глазурованные плитки. Керамические изделия для наружной и внутренней облицовки зданий.

    презентация , добавлен 30.05.2013

    Исторические этапы развития строительного материаловедения. История развития производства строительных материалов. Достижения отечественной науки, техники и промышленности. Строительные материалы в народном хозяйстве.

    реферат , добавлен 21.04.2003

    Гипс как типичный осадочный минерал. Месторождения в России. Физические и технические свойства гипса. Сухие строительные смеси. Декоративные элементы и лепнина: панно, плитка, розетка, фриз, карниз. Назначение скульптурного и медицинского гипса.

    презентация , добавлен 08.12.2016

    Классификация искусственных строительных материалов. Основные технологические операции при производстве керамических материалов. Теплоизоляционные материалы и изделия, применение. Искусственные плавленые материалы на основе минеральных вяжущих бетонных.

    презентация , добавлен 14.01.2016

    Техническая характеристика природных и обогащенных песчано-гравийных смесей. Расчет основного технологического оборудования и производительности линии по разделению песчаных и гравийных строительных смесей. Оценка энергопотребления линии производства.

В зависимости от химического состава
строительные материалы принято
делить на:
органические (древесина, пластмассы);
минеральные (природный камень,
бетон, керамика и т.п.);
металлические (сталь, чугун, цветные
металлы).

Основные источники органического и неорганического сырья

Органическое сырье
Нефть
Природные газы
Каменные и бурые угли
Битуминозные и горючие
сланцы
Древесина
Продукты растениеводства и
животноводства
Неорганическое
сырье
Горные породы
Промышленные отходы

Нефть - природная горючая маслянистая
жидкость, распространенная в осадочных породах
земной коры.
состоит из смеси различных углеводородов, а
также кислородных, сернистых и азотистых
соединений. Считается, что нефть образуется
вместе с газообразными углеводородами на
глубине свыше 1.2-2 км из захороненного
органического вещества.

Природный газ - газовая смесь образующаяся в
слоях земли при анаэробном распаде
органических веществ.
Природный газ на месте находится в
газообразном состоянии - в виде отдельных шапок
или залежей, а также растворенный в воде или
нефти.
Состав природного газа:
метан (CH4) - до 98%,
остальное: этан (C2H6), пропан (C3H8), бутан
(C4H10), водород (H2), сероводород (H2S),
углекислый газ (CO2), азот (N2), гелий (He).

Уголь - вид ископаемого топлива,
образовавшийся из частей древних растений
под землей без доступа кислорода.
Каменный уголь представляет собой плотную
породу чёрного, иногда серо-чёрного цвета с
блестящей, полуматовой или матовой поверхностью.
Содержит 75-97% и более углерода; 1,5-5,7%
водорода; 1,5-15% кислорода; 0,5-4% серы; до
1,5% азота; 45-2% летучих веществ; количество
влаги колеблется от 4 до 14%; золы - обычно от 2-
4% до 45%.
Бу́рый у́голь (лигни́ т) - твёрдый ископаемый
уголь, образовавшийся из торфа.
содержит 65-70 % углерода, имеет бурый цвет,
наиболее молодой из ископаемых углей.
Используется как местное топливо, а также как
химическое сырьё.

Каменный уголь
Бурый уголь

Горючие сланцы, полезное ископаемое,
дающее при сухой перегонке значительное
количество смолы (близкой по составу к
нефти).
состоят из преобладающей минеральной
(кальциты, доломит, гидрослюды,
монтмориллонит, каолинит, полевые
шпаты, кварц, пирит и др.) и органических
частей (кероген), последняя составляет 10-
30% от массы породы и только в сланцах
самого высокого качества достигает 50-
70%.

Древесина - ткань
высших растений.
образована из
вытянутых
веретенообразных
клеток, стенки которых
состоят в основном из
целлюлозы.
Целлюлоза –
полисахарид,
природный линейный
полимер, нитевидные
цепи которого жестко
связаны водородными
связями.
OH
CH2
O
OH
OH
O
O
OH
OH
O
CH2
OH
n

СТРОИТЕЛЬНЫЕ МАТЕРИАЛЫ НА ОСНОВЕ ОРГАНИЧЕСКОГО СЫРЬЯ

Изделия из древесины,
битумные и дегтевые вяжущие
вещества
полимерные материалы и изделия

Сырьевая база для производства полимеров

Природные газы, добываемые из газовых залежей.
Попутные нефтяные газы добывают из земных недр
одновременно с нефтью. Состав: метан - 40- 70,%, этан - 7-20%,
Состав: метан
(85-98%) и небольшое количество других газов - этана, пропана, бутана, азота,
углекислоты и сероводорода.
пропан- 5-20%, бутан -2-20% и пентан - 0-20%. Иногда в их составе имеется
сероводород - около 1%, углекислый газ -около 0,1%, азот и другие инертные
газы - до 10%.
Газы нефтепереработки образуются в качестве побочного
продукта при термической и каталитической переработке
нефтяного сырья.
Продукты термической переработки углей. При коксовании
каменных углей попутно получают кроме кокса
каменноугольный деготь, коксовый газ, аммиак, сернистые
соединения.
Продукты переработки других видов твердого топлива
(торфа, древесных и растительных материалов и их отходов).
Природные полимеры (целлюлоза) подвергаются
модификации.

Основным природным сырьем
для производства
неорганических строительных
материалов являются горные
породы
Другим важным сырьевым
источником являются
техногенные вторичные
ресурсы (отходы
промышленности)

Горные породы - это природные
образования более или менее
определенного состава и строения,
образующие в земной коре
самостоятельные геологические
тела.
Минералогический состав показывает, какие
минералы и в каком количестве содержатся в горной
породе или каменном материале.

Рудные
породы
природное
минеральное
образование с таким содержанием металлов, которое
обеспечивает экономическую целесообразность их
извлечения.
Минимальное содержание ценных компонентов, которое
экономически
целесообразно
для
промышленного
извлечения, а также допустимое максимальное содержание
вредных
примесей,
называются
промышленными
кондициями. Они зависят от форм нахождения полезных
компонентов в руде, технологических способов ее добычи и
переработки. При совершенствовании последних изменяется
оценка руд конкретного месторождения.
По хим. составу преобладающих минералов различают
руды(породы) оксидные, силикатные, сульфидные,
самородные, карбонатные, фосфатные и смешанные.

Железная руда

Железные руды - природные минеральные образования,
содержащие железо и его соединения в таком объеме, когда
промышленное извлечение железа целесообразно.
Гематит - широко
распространённый
минерал железа Fe2O3
одна из главнейших
железных руд.

Халькопирит (медный колчедан) - минерал с формулой CuFeS2

Халькопирит (медный колчедан) - минерал с
формулой CuFeS2

Аргентит или серебряный блеск - очень ценная серебряная руда, состоящая из 87 % серебра и 13 % серы; формула Ag2S

Аргентит или серебряный блеск - очень ценная
серебряная руда, состоящая из 87 % серебра и 13 %
серы; формула Ag2S

НЕРУДНЫЕ ПОЛЕЗНЫЕ ИСКОПАЕМЫЕ - неметаллические и
негорючие твердые горные породы и минералы,
могущие быть использованными в производственных
целях.
Это строительные материалы: песок (в том числе
стекольный), гравий, глина, мел, известняк, мрамор и другие;
горно-химическое сырьё : апатит, фосфорит, калийные
соли; большая часть которого используется для производства
минеральных удобрений.
металлургическое сырье: доломит, флюсовые известняки,
магнезит; используемое для производства огнеупоров, флюсов,
формовочных материалов.
огнеупорное сырье: асбест, кварц, огнеупорные глины;
драгоценные и поделочные камни: алмаз, рубин, яшма,
малахит, нефрит, хрусталь и т. д.;
абразивные материалы: корунд, наждак и т.п.

Породообразующие минералы

Минералами называют однородные по химическому составу и
физическим свойствам составные части горной породы.
Большинство минералов - твердые тела, иногда встречаются жидкие (самородная
ртуть).
В настоящее время известно около 5000 минералов. В
образовании же горных пород преимущественно участвуют
25 минералов. Основными породообразующими минералами
являются
кремнезем,
алюмосиликаты,
железисто-магнезиальные силикаты,
карбонаты,
сульфаты.

По условиям образования горные породы разделяют на три основные группы

Магматические
Осадочные
Метаморфические

Магматические

или (первичные) горные
породы образовались при
охлаждении и
отвердевании магмы

Осадочные

или (вторичные) горные породы
образовались в результате
естественного процесса
разрушения других пород под
влиянием механического,
физического и химического
воздействия внешней среды

Метаморфические

или (видоизмененные) горные
породы образовались в
результате последующего
изменения первичных и
вторичных пород, связанного со
сложными физико-химическими
процессами в земной коре

Магматические горные породы

глубинные (интрузивные); это
породы, образовавшиеся при
застывании магмы на разной глубине в
земной коре
излившиеся (эффузивные),
образовались при вулканической
деятельности, излиянии магмы и ее
затвердении на поверхности

Классификация магматических горных пород по происхождению

кварц
(и его разновидности),
полевые шпаты,
железисто-магнезиальные
силикаты,
алюмосиликаты

Эти минералы отличаются друг
от друга по свойствам,
поэтому преобладание в
породе тех или иных
минералов меняет ее
строительные свойства:
прочность, стойкость, вязкость
и способность к обработке

Важнейшие минералы магматических горных пород

Группа
минералов
Кварц
СодерПлотжание
Твер- Отношение к
ность,
SiO2,
дость выветриванию
г/см3
%
Наименование
Химический
минерала
состав
Кварц
SiO2
100
2,65
7
Ортоклаз
K2O·А12О3·6SiO2
64,8
2,56
6
Nа2O·А12О3·6SiO2
68,7
2,62
6
-
-
6
-
6
-
6
Не
выветривается
Плагиоклазы:
Полевые
шпаты
Слюды
Темноокрашенные
минералы
альбит
олигоклаз
лабрадор
Изоморфная смесь Nа2О·А12О3·6 SiO2 и
СаО·А12О3·2 SiO2
битовнит
-
-
6
андезин
Выветриваются
легче остальных
минералов,
превращаясь в
каолинит
анортит
СаО·А12О3·2 SiO2
43,2
2,76
6
Мусковит
Калиевая слюда
56
2,75
Биотит
Железомагнезиальная слюда
32
3,2
2-2,5 Мусковит
выветривается
2-2,5 труднее биотита
Авгит
Силикаты и алюРоговая обманка минаты кальция
магния и железа
Оливин
Около
40
3,03,6
6
Выветриваются
труднее
полевых шпатов

Глубинные (интрузивные) горные породы

При медленном остывании магмы в
глубинных условиях возникают
полнокристаллические структуры.
Следствием этого является ряд общих
свойств глубинных горных пород:
малая пористость,
большая плотность
и высокая прочность

Особенности ГГП

Обработка
таких пород из-за
их высокой прочности
затруднительна
Благодаря высокой плотности
они хорошо полируются и
шлифуются

Особенности ГГП

Средние показатели важнейших
свойств таких пород:
прочность при сжатии 100-300 МПа;
плотность 2600-3000 кг/м3;
водопоглощение меньше 1% по
объему;
теплопроводность около 3 Вт/(м°С)

Структура магматических горных пород

Наиболее характерными для магматических горных пород являются
две структуры: зернисто-кристаллическая (гранитная) и
порфировая.
Структура горной породы называется зернисто-кристаллической
в том случае, когда отдельные минеральные зерна различимы
простым глазом и приблизительно одинаковы по размеру.
Порфировой структурой называется такая, при которой на фоне
скрыто кристаллической или даже стекловатой массы, наблюдаются
отдельные крупные зерна (вкрапленники)). Зерна в основной массе
порфировой структуры не различимы невооруженным глазом и
могут быть определены лишь под микроскопом.

Из всех изверженных пород
граниты наиболее широко
используют в строительстве, так
как они являются самой
распространенной из глубинных
магматических пород
Остальные глубинные породы
(сиениты, диориты, габбро и
др.) встречаются и применяются
значительно реже

Гранит

Минералогический состав
гранита в среднем таков:
кварца от 20 до 40%, ортоклаза
от 40 до 60%, слюды от 5 до
20%.
Структура гранитов
преимущественно зернистокристаллическая, и в некоторых
случаях порфировидная.
Цвет гранитов определяется
цветом главной его составной
части-ортоклаза.
В зависимости от окраски
последнего он бывает серый,
желтоватый, красноватый, до
мясо-красного.

Свойства гранитов

высокая механическая прочность при
сжатии 120-250 МПа (иногда до 300
МПа)
сопротивление растяжению,
относительно невысокое и составляет
лишь около 1/30-1/40 от сопротивления
сжатию

Свойства гранитов

малая пористость, не превышающая
1,5%, что обусловливает
водопоглощение около 0,5% (по
объему)
высокая морозостойкость
высокое сопротивление истиранию
разнообразны по цвету

Свойства гранитов

огнестойкость недостаточная, так как
он растрескивается при температурах
выше 600 °С из-за полиморфных
превращений кварца

Граниты применяют:

для защитной облицовки набережных,
устоев мостов, цоколей зданий
в качестве щебня для высокопрочных
и морозостойких бетонов
благодаря значительной
кислотостойкости граниты применяют
в качестве кислотоупорной облицовки

Сиенит. Отличается от гранита отсутствием кварца;
применяется как и гранит, отличаясь от последнего
меньшей твердостью, повышенной вязкостью и
способностью лучше принимать полировку.
Является ценным материалом для мощения дорог и
получения щебня.

Диорит и габбро

Состоят в основном полевого шпата и
темноокрашенных минералов.
Соответственно изменению
минералогического состава
характеризуются более темной окраской,
нежели гранит и сиенит, более высокой
плотностью (2,75-3,0) и прочностью при
сжатии.
Употребляются как дорожный материал
(брусчатка, щебень), в виде штучных
камней и в качестве декоративного
материала (благодаря способности
отлично полироваться).
Лабрадорит, крупнозернистая разновидность габбро, отличается так называемой
ирризацией, т. е. игрой отблесков различных цветов: синего, голубого, зеленого.

Излившиеся (эффузивные) горные породы

Делятся на 2 группы:
образовавшиеся при кристаллизации
магмы на небольших глубинах и
занимающие по условиям залегания и
структуре промежуточное положение
между глубинными и излившимися
породами
образовавшиеся в результате излияния
магмы, ее охлаждения и застывания на
поверхности земли

Горные породы первой группы

имеют полнокристаллические
неравномернозернистые и
неполнокристаллические структуры
Среди неравномернозернистых
структур выделяют:
порфировидные структуры
порфировые структуры

Порфировидные структуры

характеризуются
наличием
относительно
крупных
кристаллов на
фоне
мелкокристалли
ческой
основной массы
породы

Порфировые структуры

характеризуются
наличием хорошо
образованных
кристаллов порфировых
«вкрапленников»,
погруженных в
стекловидную
основную массу
породы

В строительстве наиболее
широко применяют:
кварцевые
порфиры
бескварцевые
(полевошпатовые)
порфиры

Кварцевые порфиры

По своему минеральному составу
близки к гранитам
Их прочность, пористость,
водопоглощение сходны с
показателями этих свойств гранитов
Но порфиры более хрупки и менее
стойки вследствие наличия крупных
вкраплений

Кварцевый порфир и липарит

По химическому и
минералогическому
составу аналогичны
граниту.
Отличаются своей
порфировой структурой.
Вкрапленниками в них
являются кварц и, часто,
полевой шпат.
Стекловатая
разновидность кварцевых
порфиров и липаритов
называется вулканическим
стеклом или обсидианом.
Липарит
Кварцевый порфир

Бескварцевые порфиры

По своему составу близки к
сиенитам, но в связи с иным
генезисом обладают
худшими физикомеханическими свойствами

Ортоклазовый порфиры представляют излившиеся аналоги сиенита.
Порфирит по минералогическому составу тождественны диориту.
Характеризуются повышенной пористостью и, благодаря этому, сравнительно
малой плотностью (2,20-2,61)г/см3. Применяются в качестве строительного
камня для самых разнообразных целей.

Горные породы второй группы

Состоят из отдельных кристаллов,
вкрапленных в основную мелкокристаллическую, скрытокристаллическую и
стекловатую массу
В результате неравномерного распределения
минеральных компонентов сравнительно
легко разрушаются при выветривании и
под воздействием внешних условий, а также
обнаруживают анизотропность
механических свойств

Различают эффузивы:

излившиеся плотные
(андезиты, базальты, диабазы,
трахиты, липариты)
излившиеся пористые (пемза,
вулканические туфы и пеплы,
туфолавы)

Излившиеся плотные породы

Андезиты - излившиеся аналоги
диоритов - породы серого или
желтовато-серого цвета
Андезиты содержат плагиоклазы, роговую
обманку и биотит
Структура может быть неполнокристаллическая или стекловатая
Плотность андезитов 2700-3100 кг/м3,
предел прочности при сжатии 140-250
МПа

Андезит

Андезиты применяют:

для
получения
кислотостойких
облицовочных изделий,
в виде щебня для
кислотоупорного бетона

Базальты - излившиеся аналоги
габбро - породы черного цвета,
скрытокристаллические или
тонкозернистые, иногда порфировые
Физико-механические свойства сходны
со свойствами андезитов
Ввиду большой твердости и хрупкости
трудно обрабатываются, но хорошо
полируются

Базальт

Базальты применяют:

в качестве бутового камня и щебня для
бетонов,
в дорожном строительстве (для
мощения улиц);
в гидротехническом строительстве
в качестве исходного сырья для литых
каменных изделий,
для получения минеральных волокон в
производстве теплоизоляционных
материалов

Излившиеся пористые породы

Пемза - пористое вулканическое стекло,
образовавшееся в результате выделения
газов при быстром застывании кислых и
средних лав
Цвет пемзы белый или серый, пористость
достигает 60 %
Твердость пемзы около 6, истинная плотность
2,0-2,5 г/cм3, плотность 0,3-0,9 г/см3
Обладает хорошими теплоизоляционными
свойствами, а замкнутость большинства пор
обеспечивает достаточную морозостойкость

Пемза

Пемзу применяют:

в качестве заполнителя в легких
бетонах (пемзобетоне)
в виде гидравлической добавки к
цементам и извести (за счет наличия
в пемзе активного кремнезема)
в качестве абразивного материала
для шлифовки металлов и дерева,
полировки каменных изделий

Вулканический пепел - наиболее
мелкие частицы лавы, обломки
отдельных минералов,
выброшенные при извержении
вулкана
Происхождение пепла объясняется
размельчением лавы при
вулканических взрывах
Размеры частичек пепла колеблются
от 0,1 до 2,0 мм

Вулканический пепел
применяется как активная минеральная
добавка

Вулканические туфы - горные
породы, образовавшиеся из твердых
продуктов вулканических извержений:
пепла, пемзы и других, впоследствии
уплотненных и сцементированных
Хорошо сопротивляются выветриванию,
мало теплопроводны и, несмотря на
большую пористость, морозостойки
Они легко обрабатываются,
распиливаются, пробиваются гвоздями,
шлифуются, но не полируются

Вулканический туф

Туф используют:

в виде пиленого камня для кладки
стен жилых зданий,
устройства перегородок и
огнестойких перекрытий
в качестве декоративного камня, за
счет наличия туфов разных цветов лиловых, желтых, красных, черных
в виде щебня для легких бетонов

ОСАДОЧНЫЕ ГОРНЫЕ ПОРОДЫ

Главные породообразующие минералы

По химическому составу выделяют
группы:
кремнезема
карбонатов
глинистых минералов
сульфатов

Важнейшие минералы осадочных горных пород

Наименование
минерала
Кальцит
Магнезит
Химический
Цвет
состав
CaCO3
Плотность,
г/см3
Бесцветный,
белый и др.
2,6-2,8
светлых оттенков
MgCO3
2,9-3,1
Твердость
примечание
3
Легко реагирует с
HCl на холоду
3,5-4
Сырье для
каустического
магнезита и
огнеупоров
3,5-4
Сырье для
каустического
доломита и
огнеупоров
Белый, серый,
желтый и др.
оттенков
Доломит
CaCO3·MgCO3
2,8-2,9
Гипс
CaSO4 ·2Н2О
Бесцветный,
белый и др.
2,3
светлых оттенков
Ангидрит
CaSO4
Белый с разными
2,9-3,0
оттенками
3-3,5
Каолинит
Al2O3 ·2SiO2
·2Н2O
белый
1
Входит в состав
глин
6
Природное
цементи-рующее
вещество
Водный
SiO2·nH2O
кремнезем
Разных оттенков
2,4-2,6
-
2
Сырье для
гипсовых вяжущих
веществ

Группа кремнезема

Наиболее распространенные минералы
кварц, опал, халцедон
В осадочных породах присутствует кварц
магматического происхождения и кварц
осадочный
Осадочный кварц отлагается
непосредственно из растворов, а также
образуется в результате
перекристаллизации опала и халцедона

Группа кремнезема

Опал - аморфный кремнезем
Чаще всего бесцветен или молочнобелый, но в зависимости от
примесей может быть желтым,
голубым или черным
Плотность 1,9-2,5 г/см3,
максимальная твердость 5-6,
хрупок

Группа карбонатов

Самые важные - кальцит, доломит и
магнезит
Кальцит (CaCO3) - бесцветный или белый,
при наличии механических примесей серый,
желтый, розовый или голубоватый минерал
Блеск стеклянный. Плотность 2,7 г/см3,
твердость 3
Характерным диагностическим признаком
является бурное вскипание в 10 %-ной
соляной кислоте

Группа карбонатов

Доломит 2 - бесцветный, белый,
часто с желтоватым или буроватым оттенком
минерал
Блеск стеклянный. Плотность 2,8 г/см3,
твердость 3-4. В 10 %-ной соляной кислоте
вскипает только в порошке и при нагревании
Доломит обычно мелкозернистый, крупные
кристаллы встречаются редко. Образуется он
либо как первичный химический осадок, либо
в результате доломитизации известняков
Минерал доломит слагает породу того же
названия

Группа карбонатов

Магнезит (MgCO3) - бесцветный,
белый, серый, желтый, коричневый
минерал
Плотность 3,0 г/см3, твердость 3,5-4,5
Растворяется в НСl при нагревании
Минерал магнезит слагает породу того
же названия

Группа глинистых минералов

Относятся к водным алюмосиликатам
Наиболее широко распространены
каолинит, монтмориллонит и
гидрослюды
Монтмориллонит слагает
бентонитовые глины, иногда
служит цементирующим
материалом в песчаниках

Группа глинистых минералов

Каолинит (Al2O3·2SiO2·2H2O) - белый, иногда с
буроватым или зеленоватым оттенком
Плотность 2,6 г/см3, твердость 1.
Встречается в виде мелоподобных плотных
агрегатов
Образуется в результате разложения полевых
шпатов, слюд и некоторых других силикатов
в процессе их выветривания и переноса
продуктов разрушения
Каолинит слагает каолиновые глины, входит в
состав полиминеральных глин, иногда
присутствует в цементе обломочных пород

Группа сульфатов

Наиболее распространенные минералы гипс и ангидрит
Ангидрит (CaSO4) - белый, серый,
светло-розовый, светло-голубой
минерал
Блеск стеклянный. Плотность 3,0 г/см3,
твердость 3-3,5
Встречается в виде сплошных
мелкозернистых агрегатов

Группа сульфатов

Гипс (СаSO4·2H2O) представляет собой
скопление белых или бесцветных
кристаллов, иногда окрашенных
механическими примесями в голубые,
желтые или красные тона
Блеск стеклянный. Плотность 2,3 г/см3,
твердость 2
Для гипса, развивающегося в пустотах и
трещинах, характерно волокнистое
строение и шелковистый блеск

Кроме указанных минералов осадочные
породы нередко содержат
ОРГАНИЧЕСКИЕ ОСТАТКИ
животного и растительного
происхождения, сложенные
кремнистым или известковым
веществом
Представителями этой группы
минералов являются диатомиты,
сложенные остатками диатомовых
водорослей

В зависимости от условий образования осадочные породы делят на три подгруппы:

обломочные
породы или
механические осадки
химические осадки
органогенные породы

А. Обломочные горные породы

1.
2.
3.
4.
рыхлые, оставшиеся на месте
разрушения породы
рыхлые, перенесенные водой или
льдом (ледниковые отложения)
рыхлые перенесенные ветром
(эоловые отложения)
сцементированные, зерна которых
сцементированы различными
природными «цементами»

Рыхлые обломочные породы

песок (с зернами преимущественно до
5 мм)
гравий (с зернами свыше 5 мм)

Рыхлые обломочные породы

Применяют:
в качестве заполнителей для бетона
в дорожном строительстве
для железнодорожного балласта
пески служат компонентом сырьевой
смеси в производстве стекла,
керамических и других изделий

Глинистые породы

Сложены более чем на 50 % частицами
мельче 0,01 мм, причем не менее 25 %
из них имеют размеры меньше 0,001 мм
Они характеризуются сложным
минеральным составом. Кроме того,
глинистые породы могут содержать
обломочные зерна кварца, полевых
шпатов, слюд, а также гидроокислы,
карбонаты, сульфаты и прочие минералы

За основу минералогической классификации глинистых пород принимают состав глинистых минералов

Каолиновые
Полимиктовые
Гидрослюдистые

Каолиновые глины состоят из
минерала каолинита. Обычно они
окрашены в светлые тона,
жирные на ощупь, они
малопластичны, огнеупорны
Гидрослюдистые глины
содержат гидрослюды с большой
примесью песка

Полимиктовые глины
характеризуются наличием двух или
нескольких минералов, причем ни один
из них не является преобладающим
Они окрашены в бурые, коричневые,
серые или зеленоватые тона
Обычно содержат значительное
количество песчаной примеси и
различные карбонаты, сульфаты,
сульфиды, гидроокислы железа и т.п.

Применение глин

каолиновые глины - огнеупорны и их
широко используют в керамической
промышленности в этом качестве
гидрослюдистые глины и глины
полимиктового состава применяют для
изготовления кирпича, грубой керамики и
других изделий
являются компонентом сырьевой смеси в
производстве цемента
используют как строительный материал при
возведении земляных плотин

Сцементированные обломочные породы

Это песчаники, конгломераты, брекчии
Песчаник состоит из зерен песка,
сцементированных различными
природными «цементами»
Если в состав пород входят крупные
куски (гравий или щебень), то им
даются названия конгломераты (при
округлых кусках) и брекчии (при
остроугольных кусках)

Б. Хемогенные горные породы

Это химические осадки,
образовавшиеся из
продуктов разрушения
пород, перенесенных водой
в растворенном виде (гипс,
известняк)

Наиболее важными в строительстве являются:

1.
2.
3.
карбонатные породы
сульфатные породы
аллитовые породы

1. Карбонатные - известняки и доломиты

Известняк – состоит из кальцита (>50 %)
Доломит - состоит из доломита (>50 %)
Количество глинистой примеси может
сильно колебаться
Порода, в которой количество
карбонатного и глинистого материала
приблизительно равно, называется
мергелем

Применение

в виде бутового камня для фундаментов,
стен неотапливаемых зданий или жилых
домов в районах с теплым климатом,
наиболее плотные - в виде плит и фасонных
деталей для наружных облицовок зданий
известняковый щебень - в качестве
заполнителя для бетона
известняки - как сырье для получения
вяжущих веществ - извести и цемента
доломиты - для получения вяжущих и
огнеупорных материалов в цементной,
стекольной, керамической и
металлургической промышленности

2. Сульфатные породы - гипс и ангидрит

2. Сульфатные породы гипс и ангидрит
Ангидрит отличается от гипса
большей твердостью
Являются:
сырьем для получения вяжущих
веществ
иногда их применяют в виде
облицовочных изделий

3. Аллитовые породы - бокситы и латериты

3. Аллитовые породы бокситы и латериты
Бокситы состоят из гидроксидов Al
Они могут быть мягкими, рыхлыми,
похожими на глину и плотными с
раковистым изломом. Пластичностью
бокситы не обладают
Окраска обусловлена наличием
гидроксидов железа. Чаще она бывает
красная, бурая, коричневая,
зеленовато-серая

Бокситы
используют
для
производства
алюминия,
искусственных
абразивов,
огнеупоров,
глиноземистого
цемента

В. Органогенные породы

Образуются из остатков
некоторых водорослей и
животных: скелеты губок,
кораллов, раковины и панцири
ракообразных и др. (мел,
известняк-ракушечник,
диатомиты)

К осадочным органогенным породам относятся:

биогенные
кремнистые
породы
органогенные известняки

1. Биогенные кремнистые породы

Сложены осадочным кремнеземом
(опалом, халцедоном, кварцем)
Главными разновидностями таких пород
являются:
диатомиты,
трепелы,
опоки

Диатомиты - легкие светлые
тонкопористые породы,
состоящие из опаловых скелетов
диатомовых водорослей.
Трепелы и опоки - белые или
серые, очень легкие, похожие на
каолиновую глину или мел,
породы, состоящие из опала,
реже халцедона

Кремнистые породы широко применяются:

для производства
теплоизоляционных материалов,
в виде минеральных добавок к
вяжущим веществам (воздушной
извести, портландцементу)

2. Органогенные известняки

Состоят из целых раковин или
обломков раковин различных
морских беспозвоночных, а также
остатков известковых водорослей
Основная порода - мел

Мел - микрозернистая слабо-
цементированная порода белого
цвета
Известняки-ракушечники применяют
в строительстве в виде
строительного камня
Они легко распиливаются, обладают
небольшой плотностью (0,8-1,8
г/см3), малой теплопроводностью

минералы осадочных пород (кальцит,
доломит);
специфические метаморфические
минералы, которые могут быть только в
глубоко преобразованных
метаморфических породах

ОСНОВНЫЕ РАЗНОВИДНОСТИ МЕТАМОРФИЧЕСКИХ ГОРНЫХ ПОРОД

1. Кристаллические сланцы

Имеют мелкозернистое строение с
полностью утраченными первичными
текстурами и структурами
Цвет их от темно- до светло-серого
Основная часть породы состоит из зерен
кварца, биотита и мусковита
Некоторые разновидности глинистых,
кремнистых, слюдистых и иных сланцев
являются естественными кровельными
материалами - кровельными сланцами

Плотность кровельных сланцев
около 2,7-2,8 г/см3, пористость
0,3-3,0 %, предел прочности при
сжатии 50-240 МПа
Большое значение имеет также
прочность на излом
перпендикулярно сланцеватости

Применение

В производстве кровельных
плиток и некоторых
строительных деталей (плит
для внутренней облицовки
помещений, лестничных
ступеней, плит для пола,
подоконных досок и т.п.)

2. Гнейсы

Породы метаморфического
генезиса, образовавшиеся при
температуре 600-800 °С и
высоком давлении. Исходными
являются глинистые и кварцевополевошпатовые (граниты)
породы

Гнейсы по механическим и
физическим свойствам не уступают
гранитам, однако сопротивление на
излом параллельно сланцеватости у
них в 1,5-2 раза меньше, чем в
перпендикулярном направлении
По плоскостям сланцеватости они
раскалываются на плиты, легко
расслаиваются при замерзании и
оттаивании

Применение

при бутовой кладке,
для кладки фундаментов,
в качестве материала для щебня
и иногда в виде плит для
мощения дорог

3. Кварциты

Их образование связано с
перекристаллизацией песчаников
Важными свойствами кварцитов
являются высокая огнеупорность
(до 1710-1770 °С) и прочность на
сжатие (100-450 МПа)

Применение

в качестве стенового камня,
подферменных камней в мостах, бута,
щебня и брусчатки,
в производстве динаса - огнеупора,
обладающего высокой
кислотостойкостью
кварциты с красивой и неизменяющейся
окраской - для облицовки зданий

4. Мрамор Основными источниками многотоннажных отходов являются:

горнообогатительная,
металлургическая,
химическая,
лесная и деревообрабатывающая,
текстильная
энергетический комплекс;
промышленность строительных материалов;
агропромышленный комплекс;
бытовая деятельность человека

Из отраслей материального
производства, способных
потреблять промышленные
(техногенные) отходы,
наиболее емкой является
промышленность
строительных материалов

Применение промышленных отходов позволяет:

на 10-30 % снизить затраты на
изготовление строительных материалов по
сравнению с производством их из
природного сырья,
создавать новые строительные материалы
с высокими технико-экономическими
показателями
уменьшить загрязнение окружающей
среды

Все отходы делят на две группы:

минеральные
органические
В зависимости от преобладающих
химических соединений минеральные
отходы делят на:
силикатные, карбонатные,
известковые, гипсовые,
железистые, цинксодержащие,
щелочесодержащие и т.д.

Шлаки черной металлургии

побочный продукт при выплавке чугуна
из железных руд
основные оксиды: SiO2, Al2O3, CaO, MgO
основным потребителем доменных
шлаков является цементная
промышленность

Шлаки (шламы) цветной металлургии

разнообразны по составу
используется их комплексная
переработка
основным потребителем
шлаков/шламов является производство
цементов (бокситовый шлам,
белитовым шлам, каолиновый
шлам)

Золы и шлаки тепловых электростанций (ТЭС)

минеральный остаток от сжигания твердого
топлива
основные оксиды: SiO2, Al2O3, CaO, MgO +
несгоревшее топливо
размер частиц золы - от нескольких микрон
до 50-60 мкм, размер зерен шлака 1-50 мм
их можно использовать при производстве
практически всех строительных материалов и
изделий

Отходы горнодобывающей промышленности

вскрышные породы горнорудные отходы, отходы
добычи разнообразных полезных
ископаемых
пустые породы измельчаются и
направляются в отвалы в виде
хвостов обогащения

Гипсовые отходы химической промышленности

1.
2.
3.
4.
5.
продукты, содержащие сульфат
кальция в любой форме:
Фосфогипс
Фторгипс
Титаногипс
Борогипс
Сульфогипс

Отходы промышленности строительных материалов

клинкерная пыль
кирпичный бой
старый и бракованный бетон
бетонный лом
отходы железобетона

Прочие отходы и вторичные ресурсы

отходы и бой стекла,
макулатура,
резиновая крошка,
отходы и попутные продукты
производства полимерных материалов,
попутные продукты нефтехимической
промышленности и т.д.

Утилизация пластмасс

сейчас 50%
закапывают,
25% сжигают,
25% - вторичная
переработка
Пластмассы обладают низкими экологическими свойствами.
Пластиковые отходы должны перерабатываться, поскольку при
сжигании пластика выделяются токсичные вещества, а разлагается
пластик за 100-200 лет, а доля пластмассовых отходов увеличивается
(в бытовом мусоре - это 40%).

Решение вопроса с отходами может идти следующими
путями:
а) захоронение (хранение на складах). Однако исследования
показали, что вокруг склада загрязнены вредными
веществами почва, водоемы, воздух.
б) утилизация (уничтожение сжиганием) – однако большое
количество пластмасс выделяют вредные вещества;
в) вторичная переработка (рециклизация): необходима
организация сбора отходов и исследование вопроса о том,
сколько можно добавлять отходов и сколько раз их можно
перерабатывать повторно.
г) создание биоразлагаемых отходов, которые будут
разрушаться в естественных условиях.

На некоторых пластмассовых
изделиях вы можете увидеть
треугольник, стенки которого
образуют стрелки. В центре
такого треугольника размещается
цифра.
Это обозначение - знак
рециклирования, который делит
все пластмассы на семь групп,
чтобы облегчить процесс
дальнейшей переработки.
Полиэтиле́нтерефтала́т
В быту по этому значку можно
определить для каких целей
можно использовать
пластмассовое изделие, а в каких
случаях вообще отказаться от
использования этого изделия.
Полипропилен

К пластиковым упаковочным материалам относят 7 групп
пластмасс, для каждого из которых существует свой
цифровой символьный код, который изготовители пишут
с целью дать информацию о типе материала,
возможностях его переработки и для облегчения
процедуры сортировки перед отправкой пластика на
переработку для вторичного использования:
Номер группы пластмассы обозначается цифрой,
расположенной внутри треугольника. Под треугольником
расположена буквенная аббревиатура, обозначающая тип

Что еще почитать