Как найти площадь кв. Как найти площадь квадрата? Формулы площади, примеры расчетов

Нужно в вышеуказанную формулу подставить его стороны. Но они равны, получается, чтобы найти площадь правильного прямоугольника нужно возвести в квадрат его сторону. S = (a) во второй степени.

Теперь по формуле площади квадрата можно найти его сторону, зная численное значение площади. Для этого нужно решить уравнение второй степени: S=(a) во второй степени. Находится сторона «а» путем извлечения из под корня площади фигуры: а = корень квадратный из (S). Пример: нужно найти сторону квадрата, если его площадь составляет шестьдесят четыре квадратных сантиметров. Решение: если 64=(а) в кавдрате, то "а" равно корень из шестидесяти четырех. Получается восемь. Ответ: восемь квадратных сантиметров.

Если решение квадратного корня выходит за рамки таблицы квадратов и ответ не получается целым, спасет микрокалькулятор. Даже на самой простой машинке можно найти значение из под корня второй степени. Для этого наберите следующий набор кнопок: "число", которое выражает подкоренное выражение и "знак корня". Ответ на экране и будет подкоренным значением.

Куб представляет собой частный случай параллелепипеда, в котором каждая из граней образована правильным многоугольником - квадратом. Всего куб обладает шестью гранями. Вычислить площадь не представляет затруднений.

Инструкция

Теперь, зная площадь одной из грани квадрата, можно узнать площадь всей поверхности куба. Это можно осуществить, если модифицировать формулу, указанную выше:
S = 6*a²
Иначе говоря, зная, что таких квадратов (граней) у куба аж шесть штук, то площадь поверхности куба составляет одной из граней куба.

Для наглядности и удобства можно привести пример:
Допустим, дан куб, у которого длина ребра равна 6 см, требуется найти площадь поверхности данного куба. Первоначально потребуется найти площадь грани:
S = 6*6 = 36 см²
Таким образом, узнав площадь грани, можно найти и всю площади поверхности куба:
S = 36*6 = 216 см²
Ответ: площадь поверхности куба с ребром, равным 6 см, составляет 216 см²

Обратите внимание

Куб является частным случаем не только параллелепипеда, но и призмы.
Параллелепипедом называется призма, у которого основанием является параллелограмм. Особенностью параллелепипеда является то, что 4 из 6 его граней - прямоугольники.

Призмой считается многогранник, в основании которого находятся равные многоугольники. Одной из главных особенностей призмы можно назвать то, что боковые грани ее является параллелограммами.

Помимо куба, существуют и иные виды многогранников: пирамиды, призмы, параллелепипеды и т.д., каждому из них соответствуют различные способы нахождения площадей их поверхностей.

Полезный совет

Если дан не куб, а иной правильный многогранник, то в любом случае, площадь его поверхности будет находиться аналогично. Это означает, что площадь поверхности правильного многогранника находится путем суммирования всех площадей его граней - правильных многоугольников.

Кубом называют объемную геометрическую фигуру с восемью ребрами, двенадцатью вершинами и шестью гранями. От параллелепипеда, имеющего такие же параметры, ее отличают обязательное равенство длин всех ребер и прямые углы в вершинах каждой грани. Простота этой фигуры делает несложным вычисление общей площади поверхности всех ее граней.

Инструкция

Если известна длина куба (a), то вы можете использовать наиболее распространенный из всех возможных вариантов формулы вычисления площади (S). По определению каждая грань этой фигуры имеет квадрата, а его площадь равна длине грани, возведенной во вторую степень. Так как всего таких граней у куба шесть, то это число надо увеличить именно во столько раз: S = 6*a².

Если длина ребра неизвестна, но дан объем (V) пространства, ограничиваемого сторонами куба, то площадь (S) тоже можно . Так как известная из условий величина для этой фигуры находится возведением длины ребра в третью степень, то длину стороны каждой грани можно определить, если извлечь кубический корень из этого параметра. Подставьте это выражение в равенство из предыдущего шага и вы получите такую формулу: S = 6*(³√V)².

Если известна длина диагонали куба (L), то через нее тоже можно выразить длину одной грани, а значит и рассчитать площадь поверхности гексаэдра. Диагональ находится умножением длины грани на квадратный корень из тройки - выразите из этой формулы размер одной стороны квадрата и подставьте полученное значение во все то же равенство из первого шага: S = 6*(L/√3)² = 2*L².

Если известен радиус описанной около куба сферы (R), то формулу вычисления площади поверхности можно вывести из полученного на предыдущем шагу выражения. Так как любая из диагоналей куба совпадает с диаметром такой сферы, а диаметр - это удвоенный радиус, то вам надо трансформировать формулу к такому виду: S = 2*(2*R)² = 8*R².

Еще проще получить формулу вычисления площади поверхности (S) гексаэдра, если известен радиус (r) не описанной, а вписанной в эту фигуру сферы. Ее диаметр (удвоенный радиус) равен длине ребра куба. Подставьте это значение в формулу из первого шага и получите такое равенство: S = 6*(2*r)² = 24*r².

Грань куба представляет собой квадрат, диагональ которого делит его на два равных прямоугольных треугольника, являясь их гипотенузой. Именно поэтому все используемые здесь формулы в той или иной степени основаны на применении теоремы Пифагора. В зависимости от имеющихся данных вы сможете найти площадь грани (квадрата) куба несколькими различными способами.

Площадь многоугольника

Понятие площади многоугольника будем связывать с такой геометрической фигурой, как квадрат. За единицу площади многоугольника будем принимать площадь квадрата со стороной, равной единице. Введем два основных свойства, для понятия площади многоугольника.

Свойство 1: Для равных многоугольников значения их площадей равны.

Свойство 2: Любой многоугольник можно разбить на несколько многоугольников. При этом площадь исходного многоугольника равняется сумме площадей всех многоугольников, на которые разбит данный многоугольник.

Площадь квадрата

Теорема 1

Площадь квадрата определяется как квадрат длины его стороны.

где $a$ -- длина стороны квадрата.

Доказательство.

Для доказательства нам необходимо рассмотреть три случая.

Теорема доказана.

Площадь прямоугольника

Теорема 2

Площадь прямоугольника определяется произведением длин его смежных сторон.

Математически это можно записать следующим образом

Доказательство.

Пусть нам дан прямоугольник $ABCD$, у которого $AB=b,\ AD=a$. Достроим его до квадрата $APRV$, длина стороны которого равняется $a+b$ (рис. 3).

Рисунок 3.

По второму свойству площадей имеем

\ \ \

По теореме 1

\ \

Теорема доказана.

Пример задач

Пример 1

Найти площадь прямоугольника со сторонами $5$ и $3$.

Площадь геометрической фигуры - численная характеристика геометрической фигуры показывающая размер этой фигуры (части поверхности, ограниченной замкнутым контуром данной фигуры). Величина площади выражается числом заключающихся в нее квадратных единиц.

Формулы площади треугольника

  1. Формула площади треугольника по стороне и высоте
    Площадь треугольника равна половине произведения длины стороны треугольника на длину проведенной к этой стороне высоты
  2. Формула площади треугольника по трем сторонам и радиусу описанной окружности
  3. Формула площади треугольника по трем сторонам и радиусу вписанной окружности
    Площадь треугольника равна произведения полупериметра треугольника на радиус вписанной окружности.
  4. где S - площадь треугольника,
    - длины сторон треугольника,
    - высота треугольника,
    - угол между сторонами и,
    - радиус вписанной окружности,
    R - радиус описанной окружности,

Формулы площади квадрата

  1. Формула площади квадрата по длине стороны
    Площадь квадрата равна квадрату длины его стороны.
  2. Формула площади квадрата по длине диагонали
    Площадь квадрата равна половине квадрата длины его диагонали.
    S = 1 2
    2
  3. где S - Площадь квадрата,
    - длина стороны квадрата,
    - длина диагонали квадрата.

Формула площади прямоугольника

    Площадь прямоугольника равна произведению длин двух его смежных сторон

    где S - Площадь прямоугольника,
    - длины сторон прямоугольника.

Формулы площади параллелограмма

  1. Формула площади параллелограмма по длине стороны и высоте
    Площадь параллелограмма
  2. Формула площади параллелограмма по двум сторонам и углу между ними
    Площадь параллелограмма равна произведению длин его сторон умноженному на синус угла между ними.

    a · b · sin α

  3. где S - Площадь параллелограмма,
    - длины сторон параллелограмма,
    - длина высоты параллелограмма,
    - угол между сторонами параллелограмма.

Формулы площади ромба

  1. Формула площади ромба по длине стороны и высоте
    Площадь ромба равна произведению длины его стороны и длины опущенной на эту сторону высоты.
  2. Формула площади ромба по длине стороны и углу
    Площадь ромба равна произведению квадрата длины его стороны и синуса угла между сторонами ромба.
  3. Формула площади ромба по длинам его диагоналей
    Площадь ромба равна половине произведению длин его диагоналей.
  4. где S - Площадь ромба,
    - длина стороны ромба,
    - длина высоты ромба,
    - угол между сторонами ромба,
    1 , 2 - длины диагоналей.

Формулы площади трапеции

  1. Формула Герона для трапеции

    Где S - Площадь трапеции,
    - длины основ трапеции,
    - длины боковых сторон трапеции,

Квадрат – это правильный четырехугольник, в котором все углы и стороны равны между собой.

Довольно часто эту фигуру рассматривают, как частный случай или . Диагонали квадрата равны между собой и используются в формуле площади квадрата через диагональ.
Для расчета площади рассмотрим формулу площади квадрата через диагонали:

То есть площадь квадрата равна квадрату длины диагонали поделенному на два. Учитывая, что стороны фигуры равны, можно рассчитать длину диагонали из формулы площади прямоугольного треугольника или по теореме Пифагора.

Рассмотрим пример расчета площади квадрата через диагональ. Пусть дан квадрат с диагональю d = 3 см. Необходимо вычислить его площадь:

По этому примеру расчета площади квадрата через диагонали мы получили результат 4,5 .

Площадь квадрата через сторону

Найти площадь правильного четырехугольника можно и по его стороне. Формула площади квадрата очень проста:

Так как в предыдущем примере расчета площади квадрата мы рассчитали значение по диаметру, теперь попробуем найти длину стороны:
Подставим значение в выражение:
Длина стороны квадрата будет равна 2,1 cm.

Очень просто можно использовать формулу площади квадрата вписанного в окружность.

Диаметр описанной окружности будет равен диаметру квадрата. Так как квадрат считается правильным ромбом, можно использовать формулу расчета площади ромба. Она равна половине произведения его диагоналей. Диагонали квадрата равны, значит формула будет выглядеть так:
Рассмотрим пример расчета площади квадрата вписанного в окружность.

Дан квадрат, вписанный в окружность. Диагональ окружности равна d = 6 см. Найдите площадь квадрата.
Мы помним, что диагональ окружности равна диагонали квадрата. Подставляем значение в формулу расчета площади квадрата через его диагонали:

Площадь квадрата равна 18

Площадь квадрата через периметр

В некоторых задачах по условиям дается периметр квадрата и требуется расчет его площади. Формула площади квадрата через периметр выводится из значения периметра. Периметр – это сумма длин всех сторон фигуры. Т.к. в квадрате 4 равных стороны, то он будет равенОтсюда находим сторону фигуры Площадь квадрата по обычной формуле считается так: .
Рассмотрим пример расчета площади квадрата через периметр.

О том, что такое квадрат, многие помнят из школьного курса. Этот четырехугольник, который является правильным, имеет абсолютно равные углы и стороны. Оглянувшись вокруг, можно заметить, что нас окружает множество квадратов. Каждый день мы сталкиваемся с ними, и порой возникает необходимость найти площадь и периметр этой геометрической фигуры. Вычисление этих значений не принесет труда, если уделить несколько минут времени для просмотра данного видео урока, объясняющего простые правила проведения расчетов.

Обучающее видео “Как найти площадь и периметр квадрата”

Что необходимо знать о квадрате?

Прежде чем приступать к проведению вычислений, необходимо знать некоторые важные сведения об этой фигуре, среди которых:

  • все стороны квадрата равны;
  • все углы квадрата прямые;
  • площадь квадрата – это способ исчисления того, как много места занимает фигура в двухмерном пространстве;
  • двухмерное пространство – это лист бумаги или экран компьютера, где нарисован квадрат;
  • периметр не является индикатором наполненности фигуры, однако позволяет работать с его сторонами;
  • периметр – это сумма всех сторон квадрата;
  • подсчитывая периметр, мы оперируем одномерным пространством, что означает фиксацию результата в метрах, а не метрах квадратных (площадь).

Как найти площадь квадрата?

Вычисление площади данной фигуры можно просто и легко объяснить на примере:

  • предположим, что сторона квадрата равна 8 метрам;
  • для подсчета площади любого прямоугольника нужно умножить значение одной его стороны на другую (8 х 8 = 64);
  • поскольку мы умножаем метры на метры, то в результате получаем квадратные метры (м2).

Как найти периметр квадрата?

Зная, что все стороны данного прямоугольника равны, необходимо сделать следующие манипуляции, чтобы вычислить его периметр:

  • сложите все четыре стороны квадрата (8 + 8 + 8 + 8 = 32);
  • полученное значение будет периметром квадрата, зафиксированным в метрах.

Все формулы и исчисления, приведенные в рамках данной статьи, применимы для любого прямоугольника. Важно помнить, что когда речь идет о других прямоугольниках, которые не являются правильными, значение сторон будет разным, например 4 и 8 метров. Это означает, что для нахождения площади такого прямоугольника необходимо будет умножать разные по значению стороны фигуры, а не одинаковые.

Необходимо помнить и то, что площадь измеряется в квадратных, а периметр в простых метрах. Если периметр нарисовать в виде одной длинной линии, то его значение не изменится, что говорит о том, что исчисления проводятся в одномерном пространстве.

Площадь измеряется в двухмерном пространстве, о чем говорят квадратные метры, которые мы получаем, умножив метры на метры. Площадь является индикатором наполненности геометрической фигуры, и говорит нам о том, сколько воображаемого покрытия необходимо для того чтобы заполнить квадрат или другой прямоугольник.

Простые объяснения видео урока позволят быстро вычислить площадь и периметр не только квадрата, но и любого прямоугольника. Данные знания школьного курса будут полезны во время ремонта дома или на садовом участке.

Что еще почитать