Расположение осей в прямоугольной изометрии. Черчение

ТЕОРеТИЧЕСКАЯ ЧАСТЬ

Для наглядного изображения изделий или их составных частей применяются аксонометрические проекции. В настоящей работе рассматриваются правила построения прямоугольной изометрической проекции.

Для прямоугольных проекций, когда угол между проецирующими лучами и плоскостью аксонометрических проекций равен 90°, коэффициенты искажения связаны следующим соотношением:

k 2 + т 2 + п 2 = 2. (1)

Для изометрической проекции коэффициенты искажения равны, следовательно, k = т = п.

Из формулы (1) получается

3k 2 =2; ; k = т = п 0,82.

Дробность коэффициентов искажений приводит к усложнению расчетов размеров, необходимых при построении аксонометрического изображения. Для упрощения этих расчетов используются приведенные коэффициенты искажений:

для изометрической проекции коэффициенты искажения составляют:

k = т = n = 1.

При использовании приведенных коэффициентов искажения аксонометрическое изображение предмета получается увеличенным против его натуральной величины для изометрической проекции в 1,22 раза. масштаб изображения составляет: для изометрии – 1,22: 1.

Схемы расположения осей и величины приведенных коэффициентов искажений для изометрической проекции изображены на рис. 1. Там же указаны величины уклонов, которыми можно пользоваться для определения направления аксонометрических осей при отсутствии соответствующего инструмента (транспортира или угольника с углом 30°).

Окружности в аксонометрии, в общем случае, проецируются в виде эллипсов, причем при использовании действительных коэффициентов искажений большая ось эллипса по величине равна диаметру окружности. При использовании приведенных коэффициентов искажений линейные величины получаются увеличенными, и чтобы привести к одному масштабу все элементы изображаемой в аксонометрии детали, большая ось эллипса для изометрической проекции принимается равной 1,22 диаметра окружности.

Малая ось эллипса в изометрии для всех трех плоскостей проекций равна 0,71 диаметра окружности (рис. 2).

Большое значение для правильного изображения аксонометрической проекции предмета имеет расположение осей эллипсов относительно аксонометрических осей. Во всех трех плоскостях прямоугольной изометрической проекции большая ось эллипса должна быть направлена перпендикулярно оси, отсутствующей в данной плоскости. Например, у эллипса, расположенного в плоскости xОz, большая ось направлена перпендикулярно оси у, проецирующейся на плоскость xОz в точку; у эллипса, расположенного в плоскости yОz, - перпендикулярно оси х и т. д. На рис. 2 приведена схема расположения эллипсов в различных плоскостях для изометрической проекции. Здесь же приведены коэффициенты искажений для осей эллипсов, в скобках указаны величины осей эллипсов при использовании действительных коэффициентов.

На практике построение эллипсов заменяют построением четырехцентровых овалов. На рис. 3 показано построение овала в плоскости П 1. Большая ось эллипса АВ направлена перпендикулярно отсутствующей оси z , а малая ось эллипса CD – совпадает с ней. Из точки пересечения осей эллипса проводят окружность радиусом, равным радиусу окружности. На продолжении малой оси эллипса находят первые два центра дуг сопряжения (О 1 и О 2), из которых радиусом R 1 = О 1 1 = О 2 2 проводят дуги окружностей. На пересечении большой оси эллипса с линиями радиуса R 1 определяют центры (О 3 и О 4), из которых радиусом R 2 = О 3 1 = О 4 4 проводят замыкающие дуги сопряжения.

Обычно аксонометрическую проекцию предмета строят по ортогональному чертежу, причем построение получается более простым, если положение детали относительно осей координат х , у и z остается таким же, как и на ортогональном чертеже. Главный вид предмета следует располагать на плоскости xОz.

Построение начинают с проведения аксонометрических осей и изображения плоской фигуры основания, затем строят основные контуры детали, наносят линии уступов, углублений, выполняют отверстия в детали.

При изображении разрезов в аксонометрии на аксонометрических проекциях, как правило, невидимый контур штриховыми линиями не показывают. Для выявления внутреннего контура детали, так же как и на ортогональном чертеже, в аксонометрии выполняют разрезы, но эти разрезы могут не повторять разрезы ортогонального чертежа. Чаще всего на аксонометрических проекциях, когда деталь представляет собой симметричную фигуру, вырезают одну четвертую или одну восьмую часть детали. На аксонометрических проекциях, как правило, не применяют полные разрезы, так как такие разрезы уменьшают наглядность изображения.

При выполнении аксонометрических изображений с разрезами линии штриховки сечений наносят параллельно одной из диагоналей проекций квадратов, лежащих в соответствующих координатных плоскостях, стороны которых параллельны аксонометрическим осям (рис. 4).

При выполнении разрезов секущие плоскости направляют только параллельно координатным плоскостям (xОz, yОz или хОу).



Способы построения изометрической проекции детали: 1. Способ построения изометрической проекции детали от формообразующей грани используется для деталей, форма кото­рых имеет плоскую грань, называемую формообразующей; ши­рина (толщина) детали на всем протяжении одинакова, на боко­вых поверхностях отсутствуют пазы, отверстия и другие элемен­ты. Последовательность построения изометрической проекции заключается в следующем: 1) построение осей изометрической проекции; 2) построение изометрической проекции формообразующей грани; 3) построение проекций остальных граней посредством изо­бражения ребер модели; 4) обводка изометрической проекции (рис. 5).
Рис. 5. Построение изометрической проекции детали, начиная от фор­мообразующей грани 2. Способ построения изометрической проекции на основе по­следовательного удаления объемов используется в тех случаях, когда отображаемая форма получена в результате удаления из исходной формы каких-либо объемов (рис. 6). 3. Способ построения изометрической проекции на основе по­следовательного приращения (добавления) объемов применяется для выполнения изометрического изображения детали, форма которой получена из нескольких объемов, соединенных опреде­ленным образом друг с другом (рис. 7). 4. Комбинированный способ построения изометрической про­екции. Изометрическую проекцию детали, форма которой полу­чена в результате сочетания различных способов формообразо­вания, выполняют, используя комбинированный способ построе­ния (рис. 8). Аксонометрическую проекцию детали можно выполнять с изображением (рис. 9, а) и без изображения (рис. 9, б) неви­димых частей формы.
Рис. 6. Построение изометрической проекции детали на основе последовательного удаления объемов
Рис. 7 Построение изометрической проекции детали на основе последовательного приращения объемов
Рис. 8. Использование комбинированного способа построения изометрической проекции детали
Рис. 9. Варианты изображения изометрических проекций детали: а - с изображением невидимых частей; б - без изображения невидимых частей

ПРИМЕР ВЫПОЛНЕНИЯ ЗАДАНИЯ ПО АКСОНОМЕТРИИ

Построить прямоугольную изометрию детали по выполненному чертежу простого или сложного разреза на выбор студента. Деталь строится без невидимых частей с вырезом ¼ части по осям.

На рисунке показано оформление чертежа аксонометрической проекции детали после удаления лишних линий, обводки контуров детали и штриховки сечений.

ЗАДАНИЕ №5 СБОРОЧНЫЙ ЧЕРТЕЖ ВЕНТИЛЯ

Построение третьего вида по двум заданным

При построение вида слева, представляющего собой симметричную фигуру, за базу отсчета размеров проецируемых элементов детали берут плоскость симметрии, изображая её осевой линией.

Названия видов на чертежах, выполненных в проекционной связи, не указываются.

Построение аксонометрических проекций

Для наглядных изображений предметов, изделий и их составных частей единой системы конструкторской документации (ГОСТ 2.317-69) рекомендуется применять пять видов аксонометрических проекций: прямоугольные – изометрическую и диметрическую проекции, косоугольные – фронтальную изометрическую, горизонтальную изометрическую и фронтальную диметрическую проекции.

По ортогональным проекциям любого предмета всегда можно построить его аксонометрическое изображение. При аксонометрических построениях используются геометрические свойства плоских фигур, особенности пространственных форм геометрических тел и расположение их относительно плоскостей проекций.

Общий порядок построения аксонометрических проекций следующий:

1. Выбирают оси координат ортогональной проекции детали;

2. Строят оси аксонометрической проекции;

3. Строят аксонометрическое изображение основной формы детали;

4. Строят аксонометрическое изображение всех элементов, определяющих действительную форму данной детали;

5. Строят вырез части данной детали;

6. Проставляют размеры.

Прямоугольная геометрическая проекция

Положение оси в прямоугольной изометрической проекции приведено на рис. 17.12. Действительные коэффициенты искажения по осям равны 0,82. В практике пользуются приведенными коэффициентами, равными 1. При этом изображения получаются увеличенными в 1,22 раза.

Способы построения осей изометрии

Направление аксонометрических осей в изометрии можно получить несколькими способами (см. рис. 11.13).

Первый способ – с помощью угольника в 30°;

Второй способ – разделить циркулем окружность произвольного радиуса на 6 частей; прямая О1 – ось ох, прямая О2 – ось оy.

Третий способ – построить отношение частей 3/5; по горизонтальной линии отложить пять частей (получим точку М) и вниз три части (получим точку К). Полученную точку К соединить с центром О. ÐКОМ равен 30°.

Способы построения плоских фигур в изометрии

Для того, чтобы правильно построить изометрическое изображение пространственных фигур необходимо уметь строить изометрию плоских фигур. Для построения изометрических изображений надо выполнить следующие действия.

1. Дать соответствующее направление осям ох и оу в изометрии (30°).



2. Отложить на осях ох и оу натуральные (в изометрии) или сокращенные по осям (в диметрии – по оси оу) величины отрезков (координаты вершин точек.

Так как построение производится по приведенным коэффициентам искажения, то изображение получается с увеличением:

для изометрии – в 1,22 раза;

ход построения дан на рис 11.14.

На рис. 11.14а даны ортогональные проекции трех плоских фигур – шестиугольника, треугольника, пятиугольника. На рис. 11.14б построены изометрические проекции этих фигур в разных аксонометрических плоскостях – хоу, уоz.

Построение окружности в прямоугольной изометрии

В прямоугольной изометрии эллипсы, изображающие окружность диаметра d в плоскостях хоу, хоz, yoz, одинаковы (рис. 11.15). Причем большая ось каждого эллипса всегда перпендикулярна той координатной оси, которая отсутствует в плоскости изображаемой окружности. Большая ось эллипса АВ = 1,22d, малая ось CD = 0.71d.

При построении эллипсов через их центры проводят направления большой и малой осей, на которых соответственно откладывают отрезки АВ и СD и прямые, параллельные осям аксонометрии, на которых откладывают отрезки MN, равные диаметру изображаемой окружности. Полученные 8 точек соединяют по лекалу.

В техническом черчении при построении аксонометрических проекций окружностей эллипсы допускается заменять овалами. На рис. 11.15 показано построение овала без определения большой и малой осей эллипса.

Построение прямоугольной изометрической проекции детали, заданной ортогональными проекциями, производиться в следующем порядке.

1. На ортогональных проекциях выбирают оси координат, как показано на рис. 11.17.

2. Строят ось координат x, y, z в изометрической проекции (рис. 11.18)

3. Строят параллелепипед – основание детали. Для этого от начала координат по оси х откладывают отрезки ОА и ОВ, соответственно равные отрезкам о 1 а 1 и о 1 b 1 на горизонтальной проекции детали (рис. 11.17) и получают точки А и В.

Через точки А и В проводят прямые, параллельные оси y, и откладывают отрезки, равные половине ширины параллелепипеда. Получают точки D, C, J, V, которые являются изометрическими проекциями вершин нижнего прямоугольника. Точки С и V, D и J соединяют прямыми, параллельными оси х.

От начала координат О по оси z откладывают отрезок ОО 1 , равный высоте параллелепипеда О 2 О 2 ¢ , через точку О 1 проводят оси х 1 , у 1 и строят изометрическую проекцию верхнего прямоугольника. Вершины прямоугольника соединяют прямыми, параллельными оси z.

4. строят аксонометрическое изображение цилиндра диаметра D. По оси z от О 1 откладывают отрезок О 1 О 2 , равный отрезку О 2 О 2 2 , т.е. высоте цилиндра, получая точку О 2 и проводят оси х 2 , у 2 . Верхнее и нижнее основания цилиндра являются окружностями, расположенными в горизонтальных плоскостях х 1 О 1 у 1 и х 2 О 2 у 2 . Строят изометрическую проекцию аналогично построению овала в плоскости хОу (см. рис. 11.18). Проводят очерковые образующие цилиндра касательными к обоим эллипсам (параллельно оси z). Построение эллипсов для цилиндрического отверстия диаметром d выполняется аналогично.

5. Строят изометрическое изображение ребра жесткости. От точки О 1 по оси х 1 откладывают отрезок О 1 Е, равный ое. Через точку Е проводят прямую параллельную оси у и откладываю в обе стороны отрезок, равный половине ширины ребра (еk и ef). Получают точки К и F. Из точек К, E, F проводят прямые, параллельные оси х 1 до встречи с эллипсом (точки P, N, M). Проводят прямые, параллельные оси z (линии пересечения плоскостей ребра с поверхность цилиндра), и на них откладывают отрезки PТ, MQ и NS, равные отрезкам р 3 t 3 , m 3 q 3 , n 3 s 3 . Точки Q, S, T соединяют и обводят по лекалу, от точки K, T и F, Q соединяют прямыми.

6. Строят вырез части заданной детали.

Проводят две секущие плоскости: одну через оси z и x, а другую – через оси z и y. Первая секущая плоскость разрежет нижний прямоугольник параллелепипеда по оси х (отрезок ОА), верхний – по оси х 1 , ребро – по линии EN и ES, цилиндры диаметрами D и d – по образующим, верхнее основание цилиндра по оси х 2 . Аналогично вторая секущая плоскость разрежет верхний и нижний прямоугольник по осям у и у 1 , а цилиндры - по образующим и верхнее основание цилиндра – по оси у 2 . Плоскости, полученные от сечения, заштриховываются. Для того, чтобы определить направление линий штриховки, необходимо на аксонометрических осях, проведенных радом с изображением (рис. 11.19) отложить от начала координат равные отрезки О1, О2, О3, концы этих отрезков соединить. Линии штриховки сечений, расположенном в плоскости хОz, наносить параллельно отрезку I2, для сечения, лежащего в плоскости zОу – параллельно отрезку 23.

Удаляют все невидимые линии и линии построения и обводят контурные линии.

7. Проставляют размеры.

Для нанесения размеров выносные и размерные линии проводят параллельно аксонометрическим осям.

Прямоугольная диметрическая проекция

Построение координатных осей для диметрической прямоугольной проекции показано на рис. 11.20.

Для диметрической прямоугольно проекции коэффициенты искажения по осям х и z равны0,94, по оси у – 0,47. В практике пользуются приведенными коэффициентами искажения: по осям х и z приведенный коэффициент искажения равен 1, по оси у – 0,5. При этом изображение получается в 1,06 раза.

Способы построения плоских фигур в диметрии

Для того, чтобы правильно построить диметрическое изображение пространственной фигуры, надо выполнить следующие действия:

1. Дать соответствующее направление осям ох и оу, в диметрии (7°10¢; 41°25¢).

2. Отложить по осям х, z натуральные, а по оси у сокращенные согласно коэффициентам искажения величины отрезков (координаты вершин точек).

3. Полученные точки соединить.

Ход построения дан на рис. 11.21. На рис. 11.21а даны ортогональные проекции трех плоских фигур. На рис 11.21б построение диметричеких проекций этих фигур в разных аксонометрических плоскостях – хоу; уоz/

Построение окружности прямоугольной диметрии

Аксонометрическая проекция окружности представляет собой эллипс. Направление большой и малой оси каждого эллипса указано на рис. 11.22. Для плоскостей, параллельных горизонтальной (хоу) и профильной (уоz) плоскостям, величина большой оси равна 1,06d, малой – 0,35d.

Для плоскостей, параллельных фронтальной плоскости хоz, величина большой оси равна 1,06d, а малой – 0,95d.

В техническом черчении при построении окружности эллипсы допускается заменить овалами. На рис. 11.23 показано построение овала без определения большой и малой осей эллипса.

Принцип построения диметрической прямоугольной проекции детали (рис. 11.24) аналогичен принципу построения изометрической прямоугольной проекции, приведенной на рис 11.22 с учетом коэффициента искажения по оси у.

1

Виды аксонометрических проекций

Аксонометрические проекции в зависимости от направления проецирования разделяют на:

косоугольные, когда направление проецирования не перпендикулярно плоскости аксонометрических проекций;

прямоугольные, когда направление проецирования перпендикулярно плоскости аксонометрических проекций.

В зависимости от сравнительной величины коэффициентов искажения по осям различают три вида аксонометрии:

изометрия - все три коэффициента искажения равны между собой (u = v =w);

диметрия - два коэффициента искажения равны между собой и отличаются от третьего (и не равно v = w или и= v не равно w);

триметрия - все три коэффициента искажения не равны между собой (u не равно v не равно w).

Основное предложение аксонометрии сформулировано немецким геометром К. Польке: три произвольной длины отрезка прямых, лежащих в одной плоскости и выходящих из одной точки под произвольными углами друг к другу, представляют параллельную проекцию трех равных отрезков, отложенных на прямоугольных координатных осях от начала.

Согласно этой теореме любые три прямые в плоскости, исходящие из одной точки и не совпадающие между собой, можно принять за аксонометрические оси. Любые произвольной длины отрезки этих прямых, отложенные от точки их пересечения, можно принять за аксонометрические масштабы.

Эта система аксонометрических осей и масштабов является параллельной проекцией некоторой прямоугольной системы координатных

осей и натуральных масштабов, т. е. аксонометрические масштабы можно выдавать совершенно произвольно, а коэффициенты искажения при этом связаны следующим соотношением: u2 + v2 = w2 = 2 + + ctg 2 φ, где φ - угол между направлением проецирования и плоскостью аксонометрических проекций (рис. 156). Для прямоугольной аксонометрии, когда φ = 90°, это соотношение принимает вид u2 + v2 + w2 = 2 (1), т. е. сумма квадратов коэффициента искажения равна двум.

При прямоугольном проецировании может быть получена только одна изометрическая проекция и бесконечное множество диметрических и триметрических проекций. ГОСТ 2.317-69 предусматривает применение в инженерной графике двух прямоугольных аксонометрии: прямоугольной изометрии и прямоугольной диметрии с коэффициентами искажения u = w = 2v.

Прямоугольная изометрия характеризуется тем, что коэффициенты искажения составляют 0,82. Их получают из соотношения (1).

Для прямоугольной изометрии из соотношения (1) получаем:

Зu2 = 2, или u = v - w = √2/31/2 = 0,82, т. е. отрезок координатной оси

длиной 100 мм в прямоугольной изометрии изобразится отрезком аксонометрической оси длиной 82 мм. При практических построениях пользоваться такими коэффициентами искажения не совсем удобно, поэтому ГОСТ 2.317-69 рекомендует пользоваться приведенными коэффициентами искажения: u = v = w - 1.



Построенное таким образом изображение будет больше самого предмета в 1,22 раза, т. е. масштаб изображения в прямоугольной изометрии будет М А 1,22: 1.

Аксонометрические оси в прямоугольной изометрии располагаются под углом 120° друг к другу (рис. 157). Изображение окружности в аксонометрии представляет интерес, особенно

окружностей, принадлежащих координатным или им параллельным плоскостям.

В общем случае окружность проецируется в эллипс, если плоскость окружности расположена под углом к плоскости проекции (см. § 43). Следовательно, аксонометрией окружности будет эллипс. Для построения прямоугольной аксонометрии окружностей, лежащих в координатных или им параллельных плоскостях, руководствуются правилом: большая ось эллипса перпендикулярна аксонометрии той координатной оси, которая отсутствует в плоскости окружности.

В прямоугольной изометрии равные окружности, расположенные в координатных плоскостях, проецируются в равные эллипсы (рис. 158).

Размеры осей эллипсов при использовании приведенных коэффициентов искажения равны: большая ось 2а= 1,22d, малая ось 2b = 0,71d, где d - диаметр изображаемой окружности.

Диаметры окружностей, параллельных координатным осям, проецируются отрезками, параллельными изометрическим осям, и изображаются равными диаметру окружности: l 1 =l 2 =l 3 = d, при этом

l 1 ||x; l 2 ||y; l 3 ||z.

Эллипс, как изометрию окружности, можно построить по восьми точкам, ограничивающим его большую и малую оси и проекции диаметров, параллельных координатным осям.

В практике инженерной графики эллипс, являющийся изометрией окружности, лежащей в координатной или ей параллельной плоскости, можно заменить четырехцентровым овалом, имеющим такие же

оси: 2a = 1,22d и 2b = 0,71 d. На рис. 159 показано построение осей такого овала для изометрии окружности диаметра d.

Для построения аксонометрии окружности, расположенной в проецирующей плоскости или плоскости общего положения, нужно выделить на окружности некоторое число точек, построить аксонометрию этих точек и соединить их плавной кривой; получим искомый эллипс- аксонометрию окружности (рис. 160).

На окружности, расположенной в горизонтально проецирующей плоскости, взято 8 точек (1,2,... 8). Сама окружность отнесена к натуральной системе координат (рис. 160, а).Проводим оси эллипса прямоугольной изометрии и, используя приведенные коэффициенты искажения, строим вторичную проекцию окружности 1 1 1,..., 5 1 1 по координатам х и у (рис. 160, б). Достраивая аксонометрические координатные ломаные для каждой из восьми точек, получаем их изометрию (1 1 , 2 1 , ... 8 1). Соединяем плавной кривой изометрические проекции всех точек и получаем изометрию заданной окружности.

Изображение геометрических поверхностей в прямоугольной изометрии рассмотрим на примере построения стандартной прямоугольной изометрии усеченного прямого кругового конуса (рис. 161).

На комплексном чертеже изображен конус вращения, усеченный горизонтальной плоскостью уровня, расположенной на высоте z от нижнего основания, и профильной плоскостью уровня, дающей в сечении

на поверхности конуса гиперболу с вершиной в точке А. Проекции гиперболы построены по отдельным ее точкам.

Отнесем конус к натуральной системе координат Oxyz. Построим проекции натуральных осей на комплексном чертеже и отдельно их изометрическую проекцию. Построение изометрии начинаем с построения эллипсов верхнего и нижнего оснований, которые являются изометрическими проекциями окружностей оснований. Малые оси эллипсов совпадают с направлением изометрической оси ОZ (см. рис. 158). Большие оси эллипсов перпендикулярны малым. Величины эллипсов осей определяются в зависимости от величины диаметра окружности (d - нижнего основания и d1 - верхнего основания). Затем строят изометрию сечения конической поверхности профильной плоскости уровня, которая пересекает основание по прямой, отстоящей от начала координат на величину XA и параллельной оси Оу.

Изометрия точек гиперболы строится по координатам, замеряемым на комплексном чертеже, и откладываем без изменения вдоль соответствующих изометрических осей, так как приведенные коэффициенты искажения u = v = w = 1. Изометрические проекции точек гиперболы соединяем плавной кривой. Построение изображения конуса заканчивается проведением очерковых образующих касательной к эллипсам оснований. Невидимая часть эллипса нижнего основания проводится штриховой линией.

Что такое диметрия

Диметрия представляет собой один из видов аксонометрической проекции. Благодаря аксонометрии при одном объемном изображении можно рассматривать объект сразу в трех измерениях. Поскольку коэффициенты искажений всех размеров по 2-м осям одинаковы, данная проекция и получила название диметрия.

Прямоугольная диметрия

При расположении оси Z" вертикально, при этом оси Х" и Y" образуют с горизонтального отрезка углы 7 градуса 10 минут и 41 градус 25 минут. В прямоугольной диметрии коэффициент искажения по оси Y будет составлять 0,47, а по осям Х и Z в два раза больше, то есть 0,94.

Чтобы осущесвить построение приближенно аксонометрические оси обычной диметрии, необходимо принять, что tg 7 градусов 10 минут равен 1/8, а tg 41 градуса 25 минут равен 7/8.

Как построить диметрию

Для начала необходимо начертить оси, чтобы изобразить предмета в диметрии. В любой прямоугольной диметрии углы, находящиеся между осями Х и Z, равны 97 градусов 10 минут, а между осями Y и Z – 131 градусов 25 минут и между Y и Х – 127 градусов 50 минут.

Теперь требуется нанести оси на ортогональные проекции изображаемого предмета, учитывая выбранное положение предмета для вычерчивания в диметрической проекции. После того, как завершите перенос на объемное ихображение габаритных размеров предмета, можете приступать к чертежу незначительных элементов на поверхности предмета.

Стоит запомнить, что окружности в каждой плоскости диметрии изображаются соответствующими эллипсами. В диметрической проекции без искажения по осям Х и Z большая ось нашего эллипса во всех 3-х плоскостях проекции будет составлять 1,06 диаметра нарисованной окружности. А малая ось эллипса в плоскости ХОZ составляет 0,95 диаметра, а в плоскости ZОY и ХОY – 0,35 диаметра. В диметрической проекции с искажением по осям Х и Z большая ось эллипса равняется диаметру окружности во всех плоскостях. В плоскости ХОZ малая ось эллипса составляет 0,9 диаметра, а плоскостях ZОY и ХОY равны 0,33 диаметра.

Чтобы получить более детально изображение, необходимо выполнить вырез через детали на диметрии. Заштриховку при вычеркивании выреза следует наносить параллельно проведенной диагонали проекции выбранного квадрата на необходимую плоскость.

Что такое изометрия

Изометрия является одним из видов аксонометрической проекции, где расстояния единичных отрезков на всех 3-х осях одинаковые. Изометрическая проекция активно используется в машиностроительных чертежах, чтобы отобразить внешний вид предметов, а также в разнообразных компьютерных играх.

В математике изометрия известна как преобразование метрического пространства, которое сохраняет расстояние.

Прямоугольная изометрия

В прямоугольной (ортогональной) изометрии аксонометрические оси создают между собой углы, которые равны 120 градусам. Ось Z находится в вертикальном положении.

Как начертить изометрию

Построение изометрии предмета дает возможность получить наиболее выразительное представление о пространственных свойствах изображаемого объекта.

Перед тем, как начать построение чертежа в изометрической проекции, необходимо выбрать такое расположение изображаемого предмета, чтобы были максимально видны его пространственные свойства.

Теперь вам требуется определиться с видом изометрии, которую будете чертить. Существует два ее вида: прямоугольная и горизонтальная косоугольная.

Нарисуйте оси легкими тонкими линиями, чтобы изображение получилось по центру листа. Как уже раньше говорилось, углы в прямоугольном виде изометрической проекции должны составлять 120 градусов.

Начинайте рисовать изометрию с именно верхней поверхности изображения предмета. От углов получившейся горизонтальной поверхности нужно провести две вертикальные прямые и отложить на них соответствующие линейные размеры предмета. В изометрической проекции все линейные размеры по всех трем осям будут оставаться кратны единице. Затем последовательно требуется соединить созданные точки на вертикальных прямых. В результате получиться внешний контур предмета.

Стоит учитывать, что при изображении любого предмета в изометрической проекции видимость криволинейных деталей будет обязательно искажаться. Окружность должна изображаться эллипсом. Отрезок между точками окружности (эллипса) по осям изометрической проекции должен быть равен диаметру окружности, а оси эллипса не будут совпадать с осями изометрической проекции.

Если изображаемый объект имеет скрытые полости ли сложные элементы, постарайтесь выполнить заштриховку. Она может быть простой либо ступенчатой, все зависит сложности элементов.

Запомните, что все построение должно выполнять строго с применением чертежных инструментов. Применяйте несколько карандашей с разными видами твердости.

Рассмотрите рис. 92. На нем дана фронтальная диметрическая проекция куба с вписанными в его грани окружностями.

Окружности, расположенные на плоскостях, перпендикулярных к осям х и z, изображаются эллипсами. Передняя грань куба, перпендикулярная к оси у, проецируется без искажения, и окружность, расположенная на ней, изображается без искажения, т. е. описывается циркулем. Поэтому фронтальная диметрическая проекция удобна для изображения предметов с криволинейными очертаниями, подооных представленными на рис. 93.

Построение фронтальной диметрической проекции плоской детали с цилиндрическим отверстием . Фронтальную диметрическую проекцию плоской детали с цилиндрическим отверстием выполняют следующим образом.

1. Строят очертания передней грани детали, пользуясь циркулем (рис. 94, а).

2. Через центры окружности и дуг параллельно оси у проводят прямые, на которых откладывают половину толщины детали. Получают центры окружности и дуг, расположенных на задней поверхности детали (рис. 94, б). Из этих центров проводят окружность и дуги, радиусы которых должны быть равны радиусам окружности и дуг передней грани.

3. Проводят касательные к дугам. Удаляют лишние линии и обводят видимый контур (рис. 94, в).

Изометрические проекции окружностей. Квадрат в изометрической проекции проецируется в ромб. Окружности, вписанные в квадраты, например, расположенные на гранях куба (рис. 95), в изометрической проекции изображаются эллипсами. На практике эллипсы заменяют овалами, которые вычерчивают четырьмя дугами окружностей.

Построение овала, вписанного в ромб.

1. Строят ромб со стороной, равной диаметру изображаемой окружности (рис. 96, а). Для этого через точку О проводят изометрические оси х и у и на них от точки О откладывают отрезки, равные радиусу изображаемой окружности. Через точки a, w, с и d проводят прямые, параллельные осям; получают ромб. Большая ось овала располагается на большой диагонали ромба.

2. Вписывают в ромб овал. Для этого из вершин тупых углов (точек А и В) описывают дуги радиусом R, равным расстоянию от вершины тупого угла (точек А и В) до точек a, b или с, d соответственно. Через точки В и а, В и b проводят прямые (рис. 96, б); пересечение этих прямых с большей диагональю ромба дает точки С и D, которые будут центрами малых дуг; радиус R 1 малых дуг равен Са (Db). Дугами этого радиуса сопрягают большие дуги овала. Так строят овал, лежащий в плоскости, перпендикулярной к оси z (овал 1 на рис. 95). Овалы, находящиеся в плоскостях, перпендикулярных к осям х (овал 3) и у (овал 2), строят так же, как овал 1., только построение овала 3 ведут на осях у и z (рис. 97, а), а овала 2 (см. рис. 95) - на осях х и z (рис. 97, б).

Построение изометрической проекции детали с цилиндрическим отверстием.

Как применить рассмотренные построения на практике?

Дана изометрическая проекция детали (рис. 98, а). Нужно изобразить сквозное цилиндрическое отверстие, просверленное перпендикулярно передней грани.

Построения выполняет следующим образом.

1. Находят положение центра отверстия на передней грани детали. Через найденный центр проводят изометрические оси. (Для определения их направления удобно воспользоваться изображением куба на рис. 95.) На осях от центра откладывают отрезки, равные радиусу изображаемой окружности (рис. 98, а).

2. Строят ромб, сторона которого равна диаметру изображаемой окружности; проводят большую диагональ ромба (рис. 98, б).

3. Описывают большие дуги овала; находят центры для малых дуг (рис. 98, в).

4. Проводят малые дуги (рис. 98, г).

5. Строят такой же овал на задней грани детали и проводят касательные к обоим овалам (рис. 98, д).

Ответьте на вопросы


1. Какими фигурами изображаются во фронтальной диме-трической проекции окружности, расположенные на плоскостях, перпендикулярных к осям х и у?

2. Искажается ли во фронтальной диметрической проекции окружность, если ее плоскость перпендикулярна оси у?

3. При изображении каких деталей удобно применять фронтальную диметрическую проекцию?

4. Какими фигурами изображаются в изометрической проекции окружности, расположенные на плоскостях, перпендикулярных к осям х, у, z?

5. Какими фигурами в практике заменяют эллипсы, изображающие окружности в изометрической проекции?

6. Из каких элементов состоит овал?

7. Чему равны диаметры окружностей, изображенных овалами, вписанными в ромбы на рис. 95, если стороны этих ромбов равны 40 мм?

Задания к § 13 и 14

Упражнение 42


На рис. 99 проведены оси для построения трех ромбов, изображающих квадраты в изометрической проекции. Рассмотрите рис. 95 и запишите, на какой грани куба - верхней, правой боковой или левой боковой будет расположен каждый ромб, построенный на осях, данных на рис. 99. Какой оси (х, у или z) будет перпендикулярна плоскость каждого ромба?

Что еще почитать